

MANUAL DEL USUARIO

OLC/OLCT100

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

Copyright June 2024 by TELEDYNE OLDHAM SIMTRONICS S.A.S.

Todos los derechos reservados. Está prohibida la reproducción de la totalidad o cualquier parte de este documento, por cualquier medio posible, sin el permiso por escrito de TELEDYNE OLDHAM SIMTRONICS S.A.S.

La información que contiene este manual es precisa a nuestro entender.

Como resultado de la investigación y desarrollo continuos, las especificaciones de este producto pueden modificarse en cualquier momento sin previo aviso.

TELEDYNE OLDHAM SIMTRONICS S.A.S.

Rue Orfila

Z.I. Est - CS 20417

62027 ARRAS Cedex

DETECTOR EXPLOSIMETRICO TRANSMISOR
PARA GASES TOXICOS Y OXIGENO
MANUAL DEL USUARIO

Estamos complacidos y agradecemos su preferencia por elegir un equipo TELEDYNE OLDHAM SIMTRONICS S.A.S.

Se han tomado todas las disposiciones necesarias de modo que este equipo le proporcione una satisfacción total.

Es importante leer atentamente el presente documento.

Límites de responsabilidad

La sociedad TELEDYNE OLDHAM SIMTRONICS S.A.S., denominada TELEDYNE OLDHAM SIMTRONICS en lo sucesivo, declina su responsabilidad hacia cualquier persona debida a deterioros del equipo, lesiones corporales o fallecimientos resultantes total o parcialmente del uso inapropiado, instalación o almacenamiento de su equipo que no cumplan con las instrucciones y advertencias y/o no cumplan con las normas y reglamentos en vigor.

TELEDYNE OLDHAM SIMTRONICS no apoya ni autoriza a otra empresa o persona o persona moral a asegurar la parte de responsabilidad de TELEDYNE OLDHAM SIMTRONICS, aún si ésta está implicada en la venta de los productos de TELEDYNE OLDHAM SIMTRONICS.

TELEDYNE OLDHAM SIMTRONICS no será responsable de daños directos, indirectos así como daños y perjuicios directos e indirectos resultantes de la venta y utilización de todos sus productos SI ESTOS PRODUCTOS NO ESTÁN DEFINIDOS Y ELEGIDOS POR TELEDYNE OLDHAM SIMTRONICS PARA EL USO QUE SE DISEÑÓ.

Cláusulas relativas a la propiedad

Los diseños, planos, especificaciones e informaciones aquí incluidas contienen informaciones confidenciales que son propiedad de TELEDYNE OLDHAM SIMTRONICS.

Esas informaciones no serán en forma física o electrónica, ni parcial ni totalmente reproducidas, copiadas, divulgadas, traducidas, utilizadas como base para la fabricación o la venta de equipos de TELEDYNE OLDHAM SIMTRONICS ni por cualquier otra razón sin contar con el consentimiento previo de TELEDYNE OLDHAM SIMTRONICS.

Advertencias

Este documento no es contractual. TELEDYNE OLDHAM SIMTRONICS se reserva, en interés de su clientela, el derecho de modificar, sin previo aviso, las características técnicas de sus equipos para mejorar los desempeños.

LEA CUIDADOSAMENTE EL AVISO ANTES DE UTILIZAR POR PRIMERA VEZ Este aviso debe ser leído por toda persona que tendrá la responsabilidad de utilizar, mantener o reparar este equipo.

Este equipo no cumplirá con los desempeños publicados si no es utilizado, mantenido y reparado de acuerdo con las directivas de TELEDYNE OLDHAM SIMTRONICS, por el personal de TELEDYNE OLDHAM SIMTRONICS o por el personal habilitado por TELEDYNE OLDHAM SIMTRONICS.

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

Información importante

La modificación del material y el uso de piezas de origen indeterminado implicarán la cancelación de cualquier forma de garantía.§ Este documento no es contractual. TELEDYNE OLDHAM SIMTRONICS se reserva, en interés de su clientela, el derecho de modificar, sin previo aviso, las características técnicas de sus equipos para mejorar los desempeños.

El uso del dispositivo se ha proyectado para las aplicaciones especificadas en las características técnicas. En ningún caso podrá autorizarse la superación de los valores indicados.

Los sensores catalíticos son propensos al empobrecimiento por residuos de varias sustancias. El resultado es una inhibición que puede ser permanente o temporal en función del contaminante, de la concentración del mismo o de la duración del contacto.

El empobrecimiento puede deberse al contacto con sustancias como:

- Siliconas (por ejemplo, impermeabilizantes, adhesivos, agentes de desmoldeo, aceites y grasas especiales, ciertos productos médicos, productos de limpieza comerciales)
- Plomo tetraetílico (por ejemplo, gasolina con plomo, en especial gasolina de aviación 'avgas')
- Compuestos de azufre (dióxido de azufre, sulfuro de hidrógeno)
- Compuestos halogenados (r134a, hfo, etc.)
- Compuestos organofosforados (por ejemplo, herbicidas, insecticidas y ésteres fosfáticos en líquidos hidráulicos ignífugos)

TELEDYNE OLDHAM SIMTRONICS recomienda revisar periódicamente las instalaciones fijas de detección de gas (consulte el capítulo 5).

Garantía

Garantía de 3 años en condiciones normales de utilización en piezas y mano de obra, excepto consumibles (celdas, filtros, etc.).

Destrucción del equipo

Unión Europea (y EEE) únicamente. Este símbolo indica que conforme a la directiva DEEE (2002/96/CE) y a la reglamentación de su país, este producto no debe ser desechado con los desperdicios domésticos.

Usted lo debe depositar en un recipiente previsto a este efecto, por ejemplo, un sitio de colecta oficial de equipos eléctricos y electrónicos (EEE) para su reciclaje o un punto de intercambio de productos autorizado que sea accesible para efectuar la adquisición de un producto nuevo del mismo tipo que el viejo.

Índice

1 F	Presentación	7
1.1	Objeto	7
1.2	Principio	7
1.3	Composición del detector	7
1.4	Elementos internos	8
1.5	Indicaciones de identificación	9
2 (Gamas	11
2.1.	Las gama OLC 100 y OLCT 100	11
3 I	Instalación	13
3.1	Reglamentación y condiciones de uso	13
3.2	Material necesario	13
3.3	Alimentación eléctrica	14
3.4	Localización del detector	14
3.5	Ubicación del detector	14
3.6	Cable de enlace	15
3.7	Conexión de cable de enlace	17
4 (Calibración	21
4.1	Material necesario	21
4.2	Puesta en servicio	21
4.3	Tiempos de calentamiento	22
4.4	Calibración de OLC 100	22
4.5	Calibración de OLCT 100	24
5 I	Mantenimiento periódico	31
5.1	Periodicidad del mantenimiento	31
5.2	Acciones	32
6 1	Mantenimiento	33

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

	DEL USUARIO	
6.1	Apertura de la cubierta	33
6.2	Verificación del generador de corriente	34
6.3	Posibles anomalías	35
6.4	Reemplazo de un bloque de celda	36
7 Ac	ccesorios	39
7.1	Prensaestopas	42
8 Re	efacciones	43
9 Es	pecificaciones técnicas	47
9.1	Características dimensionales	47
9.2	Detector completo	48
9.3	Cabezal catalítico (OLCT 100 XP)	50
9.4	Cabezales toximétricos (OLCT 100 XP y OLCT 100 IS)	51
9.5	Cabezales de semiconductor (OLCT 100 XP)	53
9.6	Cabezal infrarrojo (OLCT 100 XPIR)	54
9.7	Cabezal MEMS (OLCT 100 XP)	55
	strucciones particulares para el uso en atmósfera	
	plosiva y sobre la seguridad de funcionamiento	
10.1	Generalidades	
10.2	Entradas de cables	
10.3	Uniones roscadas	
	Riesgo electrostático	
10.5 inflam	Rendimiento de la metrología para la detección de g nables	
10.6	Curva de transferencia	58
10.11	Límites de uso	63
10.12	Seguridad de funcionamiento	63
10.13	Datos de fiabilidad	64
10.14	Condiciones especiales de uso	64
11 Ar	nnexe : Ordering Information	65
11.1	Gas List	65

1 Presentación

1.1 Objeto

Los detectores de esta gama están concebidos para detectar un gas particular en función del tipo de celda utilizado.

1.2 Principio

La celda de medición convierte el gas objetivo en una tensión o una corriente. Esta magnitud eléctrica es:

- Conducida directamente, a través de un cable de enlace, a través de una central de medición dedicada (en el caso del detector explosimétrico OLC 100) capaz de realizar una medición en puente de Wheastone. Una central de medición así está disponible en la gama de TELEDYNE OLDHAM SIMTRONICS.
- Amplificada, corregida en temperatura, linearizada y convertida en una señal 4-20mA (en el caso del OLCT 100) y conducida, mediante un cable de enlace, a través de un sistema de centralizado (centro de medición, autómata industrial).

1.3 Composición del detector

Un detector está compuesto de los elementos siguientes :

Ítem	Descripción
1.	Placa de identificación.
2.	Тара
3.	Protector de tarjeta electrónica (en versión OLCT).
4.	Tarjeta electrónica.
5.	Entrada de cable (no se suministra el prensaestopa)
6.	Carcasa.
7.	Bloque de celda.
8.	Cubierta de celda
9.	Conexión de tierra
10.	Sensor de explovidad (alta temperatura).

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

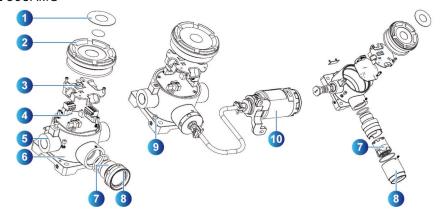
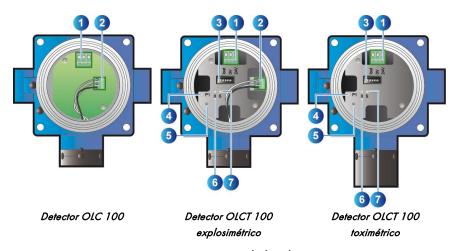


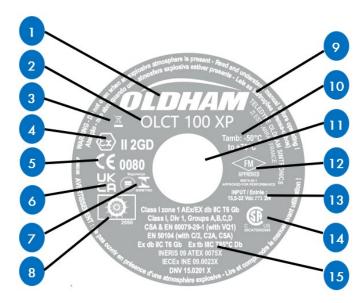
Figura 1: Elementos constituyentes de un detector tipo OLCT 100.

1.4 Elementos internos

El la parte interna, los siguientes elementos son accesibles para el usuario:

Ítem	Descripción
1.	Conector de cable de enlace a través del sistema de centralización (central de medición, autómata)
2.	Conector de bloque de celda.
3.	Conector de grifo de calibración.
4.	Calibración de 4 mA.
5.	Acceso a botón de empuje de calibración de 4 mA.
6.	Ajuste de cero.
7.	Calibración de la sensibilidad.




Figura 2: Vista interna de los detectores.

1.5 Indicaciones de identificación

La carcasa contiene dos etiquetas de identificación como sigue:

1.5.1 Placa de identificación

Contiene las indicaciones concernientes a las características del detector:

Ítem	Descripción
1.	Nombre del fabricante.
2.	Nombre del producto.
3.	Símbolo de reciclado.
4.	Marca ATEX
5.	Símbolo CE y número del organismo antes de entregar la notificación de calidad de producción TELEDYNE OLDHAM SIMTRONICS (INERIS).
6.	Marca UKCA
7.	Marca INMETRO
8.	Símbolo de la certificación Marine y el número de la Agencia aprobación que emitió el certificado
9.	Texto de advertencia.
10.	Intervalo de las temperaturas para las que se ha certificado el uso del detector en áreas con riesgo de explosión(excepto desempeños metrólogicos)
11.	Tipo de gas detectado y gama de medición.
12.	Marca FM
13.	Tipo de alimentación

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

ĺtem	Descripción
14.	Marca CSA
15.	Número de la certificación ATEX, IECEX, INMETRO

1.5.2 Etiqueta lateral

Contiene las siguientes indicaciones:

Ítem	Descripción	
1.	Calibre y paso de la entrada de cable.	M20
2.	Referencia del detector (P/N).	— () 651 09121
3.	Los dos primeros dígitos (en este caso 09) se corresponden	
	con el año de fabricación (en este caso 2009).	Figura 3: Eti

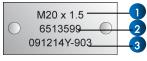


Figura 3: Etiqueta lateral.

2 Gamas

2.1. Las gama OLC 100 y OLCT 100

La gama OLC 100 está reservada a la detección de vapores explosivos por medio de una celda de puente de Wheastone.

Los detectores de la gama OLCT 100 están dotados de un circuito electrónico de amplificación permitiendo una salida analógica de 4-20 mA en 2 o 3 hilos. Se trata de detectores transmisores, con la presencia de la letra « T ».

	OLC 100	OLCT 100 XP	OLCT 100 XPIR	OLCT 100 IS	OLCT 100 HT
Especificado	A prueba de explosión	A prueba de explosión	A prueba de explosión	Intrínsecamente seguro (1)	A prueba de explosión (2)
Detección de gases explosivos	Celda catalítica (de tipo VQ1)	Celda catalítica (de tipo VQ1 o AP 4F) o semiconductor o MEMS	Celda Infrarroja	×	Celda catalítica alta temperatura
Detección de gases tóxicos	×	EC o SC	Celda Infrarroja	EC	×
Detección de oxígeno	×	EC	×	EC	×
Detección de CO ₂	×	×	Celda Infrarroja	×	×
Salida 4-20 mA	× (3)	2 hilos para EC 3 hilos para SC, CAT, MEMS	3 hilos	2 hilos	3 hilos

¹⁾ Barrera Zener obligatoria sobre la línea

AP: antiveneno

MEMS: Sistemas microelectromecánicos, tecnología de conductividad térmica

Tabla 1: Comparativo de detectores OLC 100 y OLCT 100

⁽²⁾ celda remota a 5, 10 o 15 metros por medio de un cable de alta temperatura.

⁽³⁾ salida de puente mV, 3 hilos

EC: sensor electroquímico. SC: Sensor de semiconductor. CAT: Detector explosimétrico.

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

3 Instalación

Es recomendable tomar conocimiento de las guías relativas a la instalación, utilización y mantenimiento de los detectores de gases inflamables y de oxígeno (norma EN/IEC 60079-29-2) y de los detectores tóxicos (norma EN 62990-2).

La instalación se realizará siguiendo la normativa vigente, la clasificación de la zona, la conformidad con las normas EN/IEC 60079-14, ediciones en vigor u otras normas nacionales y/o locales.

3.1 Reglamentación y condiciones de uso

- La instalación deberá respetar la reglamentación vigente para las instalaciones en atmósferas explosivas, especialmente las normas EN/IEC 60079-14 y IEC/EN 60079-17 (ediciones vigentes) u otras normas nacionales.
- De manera general, las temperaturas ambiente, las tensiones de alimentación y potencias mencionadas en este documento son relativas a la protección contra explosiones. No se trata de temperaturas de funcionamiento del detector.
- El equipo está permitido en las zonas 0 (ES única versión), 1, 2, 20 (ES versión solamente), 21 y 22 para temperaturas ambiente que van desde -40 ° C a + 70 °C.
- La celda de detección en el transmisor deberá siempre estar en contacto con el aire ambiente. Para lograrlo:
 - No cubrir el detector.
 - No depositar pintura sobre el detector.
 - Evitar depósitos de polvo.

3.2 Material necesario

- Detector completo.
- Cable de enlace requerido.
- Multímetro (intrínsecamente seguro si fuera necesario)
- Herramientas.
- Material de fijación.

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

3.3 Alimentación eléctrica

Tipo de detector	Alimentación (V DC)	Corriente máxima (mA)	Potencia consumida (mW)	
OLCT 100 XP HT	15.5 a 32	110	1 <i>7</i> 05	
OLCT 100 XP CAT	15.5 a 3.2	100	1550	
OLCT 100 XP IR	15.5 a 32	80	930	
OLCT 100 XP EC	11 a 32	23,5	260	
OLCT 100 IS EC	11 a 32	23,5	260	
OLCT 100 XP SC	15.5 a 32	100	1550	
OLCT 100 XP MEMS	15.5 a 32	30	465	
OLC 100 (VQ1)	Por central de TELEDYNE OLDHAM SIMTRONICS	340	(1)	
OLC 100 (4F)	Por central de TELEDYNE OLDHAM SIMTRONICS	370	(1)	

⁽¹⁾ depende del monitor de gas.

3.4 Localización del detector

El detector estará colocado a nivel del suelo, del techo, a la altura de las vías respiratorias o próximo a las tomas de extracción de aire, en función de la densidad del gas a detectar o de la aplicación. Los gases pesados se detectarán cerca del suelo, mientras que los gases ligeros estarán presentes en el techo. Las densidades de los gases se proporcionan en la página 28.

3.5 Ubicación del detector

El detector se instalará con la celda de detección orientada hacia la base.

Una inclinación de más de 45° con respecto a la vertical genera una imprecisión en la medición.

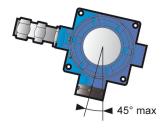


Figura 4: Celda orientada hacia la base y ángulo de inclinación máxima.

DETECTOR EXPLOSIMETRICO TRANSMISOR
PARA GASES TOXICOS Y OXIGENO
MANUAL DEL USUARIO

La fijación de la carcasa se efectuará por medio de 4 tornillos M6 y de clavijas adaptadas al soporte.

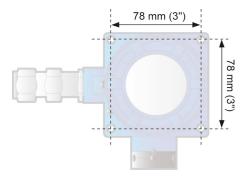


Figura 5: Diagrama de fijación de la carcasa.

Está disponible un soporte específico para el montaje del detector en el techo (ver el capítulo de accesorios).

Para la versión OLCT 100 HT, sólo el cabezal de detección remota puede ser utilizado a temperaturas ambientes de -20 °C a + 200°C. La carcasa OLCT 100 HT es utilizable únicamente a temperaturas ambiente de -50°C a + 70°C. El cable de alta temperatura entre la carcasa OLCT 100 HT y el cabezal está integrado al equipo y no puede ser reemplazado por el usuario.

El cable deberá protegerse mecánicamente.

3.6 Cable de enlace

El detector estará conectado al sistema de centralización (central de medición, autómata) por un cable de instrumentación blindado si fuera necesario. La elección del cable tomará en cuenta las exigencias particulares de la instalación, la distancia y el tipo de detector (ver la tabla siguiente).

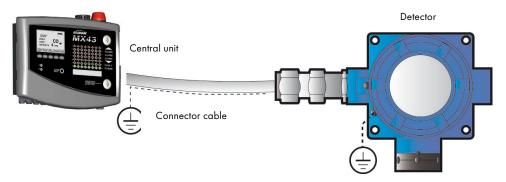


Figura 6: El cable de enlace que conecta el detector al sistema de centralización debe determinarse con cuidado.

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

Tipo de detector	Tipo de celda.		áxima (km) sección indi	Resistencia de carga máxima en 4-20 mA.	
		0,5 mm ²	0,9 mm ²	1,5 mm²	
Tensión en línea (VCC)		24	24	24	_
OLCT 100 XP	Catalítica o semiconductora	0,8	1,4	2,4	250
OLCT 100 XP	MEMS	1,6	3	4,4	250
OLCT 100 XP (1)	Electroquímico	<4	<4	<4	250
OLCT 100 XPIR	Infrarroja	1,4	2,6	4,4	250
OLCT 100 IS (2)	Electroquímico	1,8	3,3	<4	250
OLCT 100 HT	Catalítica de alta temperatura	0,8	1,4	2,4	250

⁽¹⁾ para el cálculo de la resistencia, la carga considerada es de 120Ω a 4-20 mA.

Atención: El cableado debe respetar las normas de instalación y ser objeto de un sistema de gestión documental para las instalaciones de SI.

El cable estará provisto forzosamente de una malla de blindaje para reducir la influencia de corrientes eléctricas parásitas y de radiofrecuencias. Puede utilizarse un cable tipo AFNOR M 87-202 01-IT-09-EG-FA (Nexans). Se seleccionará en función del tipo de detector conforme a la tabla siguiente: Se proporcionan otros ejemplos de cables que pueden utilizarse:

Zona no ATEX : CNOMO FRN05 VC4V5-F Zona ATEX : GEUELYON (U 1000RHC1) Zona ATEX : GVCSTV RH (U 1000)

Zona ATEX: xx-xx-09/15- EG-SF \u00e9 EG-FA \u00e9 EG-PF (U 300 compatible con M87202)

La longitud máxima admisible será función de la sección de los conductores del cable (ver la tabla), respecto a la tensión de alimentación mínima.

⁽²⁾ para el cálculo de la resistencia, la carga considerada es de 120Ω a 4-20 mA y una barrera Zener de 300Ω .

3.7 Conexión de cable de enlace

3.7.1 Corte de tensión de la línea

Sobre el sistema de centralización.

- 1. Inhibir las alarmas de instalación a fin de evitar activaciones inoportunas durante la operación.
- 2. Proceder al corte de tensión del módulo que deberá estar conectado al detector conforme a las instrucciones del fabricante.

3.7.2 Preparación del cable

El cable estará conectado al sistema de centralización (central de medición, autómata programable) en el punto de medición (ver Figura 6). Las precauciones en cuanto al paso, mantenimiento y protección del cable serán.

3.7.3 Paso del cable

El detector se suministra sin prensaestopa

Es primordial respetar las instrucciones del fabricante del prensaestopas y de conectar la malla de blindaje correctamente. M20x1.5 flamme prueba pasacables certificado deberá ser utilizado (véase el capítulo 11).

 Retire la junta y las dos arandelas metálicas (Rep A) que se suministran con el detector..

2 - Coloque el cable como se muestra en la imagen.

3 - Corre la pantalla trenzada como se muestra en la imagen.Evitar la creación " coletas " con el blindaje trenzado.

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

4 - Vuelva a introducir la pieza en el OLCT100 y monte el prensaestopa (no se suministra)..

3.7.4 Conexión del cable

La conexión del cable de enlace detector/sistema de centralización deberá realizarse sin tensión.El espacio deberá ser equipotencial

Efectuar la conexión del cable del lado del detector antes de la conexión del sistema de centralización.

Una vez efectuado el cableado, conectar el cable al borne de tierra del sistema de centralización.

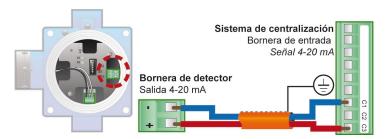


Figura 7: Conexiones para un detector 4-20 mA 2 hilos.

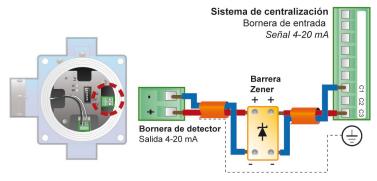


Figura 8: Conexiones para un detector intrínsecamente seguro 4-20 mA 2 hilos con barrera Zener.

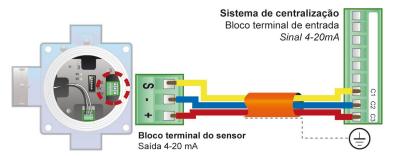


Figura 9: Conexiones para un detector 4-20 mA 3 hilos.

DETECTOR EXPLOSIMETRICO TRANSMISOR
PARA GASES TOXICOS Y OXIGENO
MANUAL DEL USUARIO

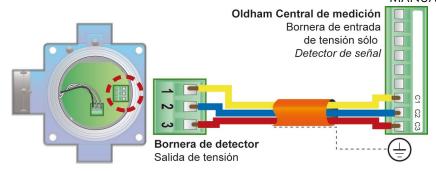


Figura 10: Conexiones para un detector 3 hilos tipo OLC 100.

3.7.5 Conexión de carcasa a tierra

Conectar el borne de tierra de la carcasa a tierra conforme a los reglamentos. Esta tierra puede conectarse a partir del cruce localizado sobre un tornillo de fijación del circuito impreso en el interior de la carcasa.

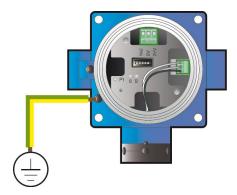


Figura 11: Borne de enlace a tierra.

3.7.6 Cierre de la cubierta

Antes de proceder a la conexión del cable en la bornera del sistema de centralización, es imperativo proceder al cierre completo de la cubierta.

Con el fin de bloquear la cubierta por la rotación , desenroscar el tornillo de bloqueo hasta que entre en contacto con la cubierta.

Si se va a retirar la cubierta, apriete el tornillo de bloqueo antes de desenroscar la tapa..

tornillo de bloqueo de la tapa

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

4 Calibración

Las acciones descritas en este capítulo están reservadas a las personas autorizadas y capacitadas ya que son susceptibles de poner en entredicho la fiabilidad de la detección.

El procedimiento presente describe:

- La calibración del cero;
- La calibración de la sensibilidad.

4.1 Material necesario

- Multímetro intrínsecamente seguro si fuera necesario.
- Tanque de aire puro.
- Tanque de gas estándar de concentración adaptada al rango de medición (entre 30 y 70% del rango de medición).

4.2 Puesta en servicio

4.2.1 Verificaciones previas

Verificar los siguientes puntos:

- Conexión a tierra de la carcasa del detector.
- Conexión del blindaje del cable y el suelo para el controlador.
- Calidad del montaje mecánico (fijación, prensaestopas, cubierta).

Energizado del detector

- 1. Inhibir las alarmas de instalación a fin de evitar activaciones inoportunas durante la operación.
- 2. Proceder al energizado de la línea conectada al detector conforme a las instrucciones del fabricante.

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

4.3 Tiempos de calentamiento

Cuando se enciende o después de sustituir un sensor, es necesario un periodo de calentamiento antes de realizar una calibración.

- Tecnología catalítica: 2 horas.
- ecnología electroquímica para oxígeno: 1 (celda > 2 años) a 1,5 horas (celda > 2 años).
- Tecnología electroquímica para gases tóxicos: 1 hora salvo,
 - NO (monóxido de nitrógeno): 12 horas.
 - HCl (ácido clorhídrico): 24 horas.
 - CH₂O (formaldehído): 36 horas.
 - ETO (óxido de etileno): 36 horas.
 - CH₂O (formaldehído): 36 horas
- Tecnología de semiconductores: 4 horas.
- Tecnología de infrarrojos: 2 horas.
- Tecnología MEMS: 2 horas

Condiciones específicas para la puesta en tensión del OLCT 100 con sensor MEMS:

El MEMS OLCT100 XP debe alimentarse con una conductividad térmica similar a la de la mezcla de gases en la que se utilizará. Para su uso al aire libre, el MEMS OLCT100 XP debe encenderse en el aire ambiente.

La concentración de gas, expresada en la salida analógica, está disponible 2 minutos después de encender el OLCT100 XP.

Recomendamos verificar que no haya gases inflamables en la atmósfera antes de encender el MEMS OLCT100 XP.

Si existe alguna duda sobre la ausencia de gas inflamable en el ambiente, se recomienda encender el OLCT100-XP-MS inyectando aire sintético reconstituido (78,2% Vol. N2, 20,9% Vol. O2, 0,9% Vol. Ar) o la siguiente mezcla (82% Vol. N2, 18% Vol.O2) de una botella de gas titulada.

La difusión de los gases titulados debe tener lugar antes de encender el MEMS OLCT100 XP y continuar durante 2 minutos después del arranque.

4.4 Calibración de OLC 100

La cubierta del detector permanece cerrada; los ajustes se efectúan a nivel de la central de medición.

Para un detector explosimétrico, es recomendable calibrar el detector con el gas a detectar. Cuando el usuario desee calibrar el detector con un gas distinto que el detectado y programado en fábrica, refiérase a la tabla en la página 27, y utilice el gas aconsejado y el coeficiente correspondiente.

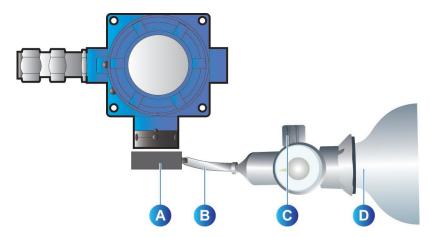


Figura 12: Puesta a cero y sensibilidad (OLC 100).

4.4.1 Calibración de cero

Proceder como sigue:

- 1. Inhibir los testigos de alarma del sistema de centralización.
- 2. Colocar la cubierta de calibración sobre el cabezal de detección (Figura 12, rep. A).
- 3. Conectar la cubierta de calibración al tanque de aire puro (rep. D) por medio de un tubo flexible (rep. B).
- 4. Abrir la llave del tanque de aire puro (flujo a 30 a 60 l/h) (rep. C).
- 5. Después de la estabilización de la medición (lapso de unos 2 minutos), leer la indicación en la carátula de la central de medición.
 - Una lectura de « 0,0 » corresponde a 0% de gases.
- 6. Si se muestra un valor diferente, active el ajuste « 0 » de la central de medición para corregir el valor hasta obtener una lectura precisa de 0.0%.
- 7. Cerrar la llave (rep. C) del tanque. Retirar la cubierta de calibración (rep. A) si no se precisa de un control de sensibilidad.
- 8. Rehabilitar los testigos de alarma del sistema de centralización.

4.4.2 Calibración de la sensibilidad al gas

Este procedimiento se realiza después de la etapa de ajuste de cero.

- 1. Inhibir los testigos de alarma del sistema de centralización.
- 2. Colocar la cubierta de calibración sobre el cabezal de detección (Figura 12, rep. A).

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

- 3. Conectar la cubierta de calibración al tanque de gas estándar (rep. D) por medio de un tubo flexible (rep. B).
- 4. Abrir la llave del tanque de gas estándar (con un flujo de 30 a 60 l/h) (rep. C).
- 5. Después de la estabilización de la medición (lapso de unos 2 minutos), leer la indicación en la carátula de la central de medición.
- 6. Accionar el ajuste « S » de la central de medición para mostrar el valor deseado.
- 7. Cerrar la llave (rep. C) del tanque y retirar la cubierta de calibración (rep. A).
- 8. Esperar el retorno a cero de la señal de medición y rehabilitar los testigos de alarma del sistema de centralización.

4.5 Calibración de OLCT 100

Espere a que el tiempo de estabilización durante el encendido.

Para un detector de LEL, se recomienda para calibrar con el gas objetivo. Si el operador calibrar con otro gas, por favor refiérase a las tablas en las páginas 27 a 29 para conocer el gas de calibración recomendada y el factor de sensibilidad cruzada.

4.5.1 Calibración de cero (OLCT 100)

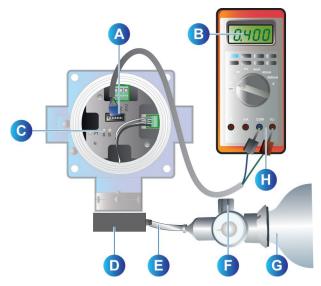


Figura 13: Puesta a cero y sensibilidad (OLCT 100).

Procedimiento de la calibración de cero:

- 1. Inhibir los testigos de alarma del sistema de centralización.
- 2. Insertar las terminales verdes y azules del cable de medición respectivamente en los bornes + y del multímetro (, rep. H.).

DETECTOR EXPLOSIMETRICO TRANSMISOR
PARA GASES TOXICOS Y OXIGENO
MANUAL DEL USUARIO

- 3. Insertar la terminal del cable de medición en el conector (rep. A).
- 4. Colocar la cubierta de calibración sobre el cabezal de detección (rep. D).
- 5. Conectar la cubierta de calibración al tanque de aire puro (rep. G) por medio de un tubo flexible (rep. E).
- 6. Abrir la llave (rep. F) del tanque de aire puro (flujo de 30 a 60 l/hora).
- 7. Después de la estabilización de la medición (lapso de unos 2 minutos), leer la indicación en el multímetro (rep. B).

Una medición de 0.4V corresponde a 4 mA, equivalente a una indicación de 0% de gas.

Nota: Para el detector de oxígeno, inyectar el nitrógeno puro en vez del aire.

- 8. Si se muestra un valor diferente, accione la calibración « 0 » (rep. C) para corregir el valor hasta obtener una lectura precisa de 0.4V.
- Cerrar la llave (rep. F) del tanque. Retirar la conexión de calibración (rep. A), la cubierta de calibración (rep. D) y cerrar nuevamente el detector si no se precisa de un control de sensibilidad.
- 10. Rehabilitar los testigos de alarma del sistema de centralización.

4.5.2 Calibración de la sensibilidad (OLCT 100)

Este procedimiento permite la calibración de la medición correspondiente a x % de gas. Proceder como sigue

- 1. Inhibir los testigos de alarma del sistema de centralización.
- 2. Insertar las terminales verdes y azules del cable de medición respectivamente en los bornes + y del multímetro (, rep. H.)
- 3. Insertar el cable de medición en el conector (rep. A).
- 4. Colocar la cubierta de calibración sobre el cabezal de detección (rep. D).
- 5. Conectar la cubierta de calibración al tanque de gas estándar (rep. G) por medio de un tubo flexible (rep. E).

Será imperativo usar un manómetro de acero inoxidable y de tubo de teflón para los gases tóxicos y los freones.

Nota: Para un detector de oxígeno, utilizar un tanque de aire puro o de ambiente con 19% de oxígeno.

- 6. Abrir la llave (rep. F) del tanque de gas estándar (flujo ajustado de 30 a 60 l/hora).
- 7. Después de la estabilización de la medición (lapso de unos 2 minutos), leer la indicación en el multímetro.

Utilizar la fórmula siguiente para determinar el valor de la tensión a mostrar:

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

Valor de la tensión mostrada (mV) = 400 mV + (1600 mV x concen. del tanque)

Rango de celda

Por ejemplo, para un rango de 1000 ppm de CO con un tanque de gas estándar de 300 ppm, el valor mostrado de la tensión será de:

Valor de la tensión mostrada (mV) = 400 mV + $(1600 \text{ mV} \times 300)$ = 880 mV 1000

- 8. Si se muestra un valor diferente, accione la calibración « S » (rep. C) para corregir el valor hasta obtener una lectura precisa del valor del gas estándar.
- 9. Cerrar la llave (rep. F) del tanque. Retirar el cable de medición (rep. A), la cubierta de calibración (rep. D) y cerrar el detector.
- 10. Esperar el retorno a cero de la señal de medición y rehabilitar los testigos de alarma del sistema de centralización.

Coeficientes para la calibración de gases explosivos para los detectores catalíticos.

Cuando se utiliza un sensor de tipo VQ1 (disponible para OLC100 y OLCT 100), los coeficientes son los siguientes

Tabla 2: Coeficientes para la calibración de gases explosivos para los detectores catalíticos equipados con la celda VQ1

Gas	Chemical Formula	LEL (%)	LSE (%)	Flash point (°C)	Vapor density		Coefficient- Calibration gas H2 (Hydrogen)	Coefficient - Calibration gas C4H10 (Butane)	Coefficient - Calibration gas C5H12 (Pentane)	Coefficient - Calibration gas C3H8 (Propane)
Ethyl acetate	C4H8O2	2,10%	11,50%	-4°C	3,0	1,65		0,90	0,80	
Acetone	C3H6O	2,15	13,00	-18	2,1	1,65		0,90	0,80	
Acetylene	C2H2	2,30	100	-18	0,9	2,35	1,90	1,25	1,15	
Acrylic acid	C3H4O2	2,40%	8,00%	54°C	2,5	5,00		2,65	2,40	
Butyl acrylate	C7H12O2	1,20%	8,00%	37°C	4,4	3,50		1,85	1,70	
Ethyl acrylate	C5H8O2	1,70%	13,00%	-2°C	3,5	3,05		1,65	1,50	
Acrylonitrile	C3H3N	2,80%	28,00%	-1°C	1,8	1,45	1,20	0,80	0,70	
Ammoniac	NH3	15,00	30,20	<-100	0,6	0,90	0,75	0,50	0,45	
Benzene	C6H6	1,20%	8,00%	-11°C	2,7	4,00		2,15	1,90	
1.3-Butadiene	C4H6	1,40%	16,30%	-85°C	1,9	2,55		1,35	1,25	
Butane	C4H10	1,50	8,50	-60	2,0	1,90		1,00	0,90	1,23
Butanol (Butyl Alcool)	C4H10O	1,4%	11,3%	29°C	2,6	1,95		1,05	0,95	
2 - Butanone (MEK)	C4H8O	1,80%	11,50%	-4°C	2,5	3,90		2,10	1,90	
Cyclohexane	C6H12	1,20%	8,30%	-17°C	2,9	2,00		1,10	1,00	
Dimethylether	C2H6O	3,00%	27,00%	-41°C	1,6	1,80		0,95	0,90	
Dodecane	C12H26	0,60%	~6,0%	74°C	5,9	4,00		2,15	1,90	
Ethane	C2H6	3,00	15,50	135	1,0	1,50		0,80	0,75	
Ethanol	C2H6O	3,30	19,00	13	1,6	2,15	1,75	1,30	1,00	1,39
Ether (Diethylether)	(C2H5)2O	1,70%	36,00%	-45°C	2,6	1,90		1,00	0,90	
Ethylene	C2H4	2,70	34,00	- 135	1,0	1,65	1,35	0,90	0,80	
LPG	Prop+But	1,65	~9,0	<-50	1,9	1,90		1,00	0,90	
Diesel	Melange	0,60	~6,0	55	>4	3,20		1,70	1,55	
Natural Gas	CH4	5,00	15,00	-188	0,6	1,05				
Heptane	C7H16	1,10	6,70	-4	3,5	2,20		1,20	1,05	
Hexane	C6H14	1,20	7,40	-23	3,0	2,10		1,15	1,00	
Hydrogen	H2	4,00	<i>75,</i> 60	-	0,069		1,00			0,81
Isobutane	C4H10	1,50%	8,40%	-83°C	2,0	1,50		0,80	0,75	
Isobutene	C4H8	1,60%	10,00%	<-10°C	1,9	2,20		1,20	1,05	

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

Gas	Chemical Formula	LEL (%)	LSE (%)	Flash point (°C)	Vapor density	Coefficient- Calibration gas CH4 (methane)	Coefficient- Calibration gas H2 (Hydrogen)	Coefficient - Calibration gas C4H10 (Butane)	Coefficient - Calibration gas C5H12 (Pentane)	Coefficient - Calibration gas C3H8 (Propane)
Isopropanol	C3H8O	2,15%	13,50%	11,7°C	2,1	1,60		0,85	0,80	
Kerosene (JP4)	C10 - C16	0,70%	5,00%	> 50 °C	> 4	5,00		2,65	2,40	
Methyl Methacrylate	C5H8O2	2,10%	12,50%	2°C	3,5	2,25		1,20	1,10	
Methane	CH4	5,00	15,00	-188	0,55	1,00				0,65
Methanol	СНЗОН	5,50%	44,00%	11°C	1,1	1,40	1,15	0,75	0,70	
Naphta	melange (Mixture)	0,90%	5,90%	> 44°C	> 4	3,50		1,85	1,70	
Nonane	C9H20	0,70	5,60	31	4,4	4,40		2,35	2,10	
Octane	C8H18	1,00	6,00	12	3,9	2,70		1,45	1,30	
Ethylene Oxyde	C2H4O	2,60%	100%	-20°C	1,5	2,10	1,70	1,15	1,00	
Propylene oxide	C3H6O	1,90%	37,00%	70°C	2,0	2,35	1,90	1,25	1,15	
Pentane	C5H12	1,40	8,00	-49	2,5				1,00	
Propane	C3H8	2,00	9,5	-104	1,6	1,55		0,85	0,75	1,00
Propylene	C3H6	2,00	11,70	-107,8	1,5	1,65		0,90	0,80	
Styrene	C8H8	1,1	8,00	31	3,6	6,30		3,35	3,00	
Gasoline lead free	/	1,10%	~6,0 %	21°C	3 à 4	1,80		0,95	0,90	
Toluene	C7H8	1,20	7	5	3,1	4,00		2,15	1,90	
Turpentine Oil	-	0,8%	6,0%	35°C	4,7	3,50		1,85	1,70	
Triethyl amine	C6H15N	1,20%	8%	-15°C	3,5	2,05		1,10	1,00	
White Spirit	melange (Mixture)	1,10%	6,50%	>30°C	> 4	3,50		1,85	1,70	
Xylene	C8H10	1,00	7,60	25	3,7	4,00		2,15	1,90	

Celda con fondo gris: Gas recomendado para la calibración del detector

Valor LEL y LSE según ISO 10156

DETECTOR EXPLOSIMETRICO TRANSMISOR
PARA GASES TOXICOS Y OXIGENO
MANUAL DEL USUARIO

En caso de utilizar una celda antiveneno tipo 4F (disponibles únicamente para OLCT 100), los coeficientes son los siguientes:

Tabla 3: Coeficientes para la calibración de gases explosivos para los detectores catalíticos equipados con la celda 4F.

Gas	Chemical Formula	LEL (%)	LSE (%)	Vapor density	ficient- Calibration gas CH4 (methane)	Coefficient - Calibration gas C5H12 (Pentane)	Coefficient- Calibration gas H2 (Hydrogen)
Acetone	C3H6O	2,15	13,0	2,1	2,24	1,03	1,1
Acetylene	C2H2	2,3	100	0,9	1,91	0,7	
Ammoniac	NH3	15,0	30,2	0,6	0,79	0,36	
Benzene	C6H6	1,2	8,0	2,7	2,45	1,13	
n-Butane	C4H10	1,5	8,5	2,0	2,16	0,99	
Ethane	C2H6	3,0	15,5	1,0	1,47	0,78	
Ethanol	C2H6O	3,3	19,0	1,6	1,37	0,63	
Ethylene	C2H4	2,7	34,0	1,0	1,41	0,65	
n-Hexane	C6H14	1,2	7,4	3,0	2,85	1,14	
Hydrogen	H2	4,0	75,6	0,07			1,0
Isopropanol	C3H8O	2,15	13,5	2,1	1,84	0,85	
JP-4					3,28	1,51	
JP-5					3,33	1,53	
JP-8					3,48	1,6	
Methane	CH4	5,0	15,0	0,55	1,0		
Methanol	СНЗОН	5,5	44,0	1,1	1,27	0,58	
n-Pentane	C5H12	1,4	8,0	2,5	2,17	1,0	
Propane	C3H8	2,0	9,5	1,6	1,9	0,87	
Styrene	C8H8	1,1	8,0	3,6	2,13	0,98	
Toluene	C7H8	1,2	7,0	3,1	2,26	1,04	
Xylene	C8H10	1,0	7,6	3,7	2,8	1,29	

Celda con fondo gris: Gas recomendado para la calibración del detector

Valor LEL y LSE según ISO 10156

Calibración de un detector (VQ1) « Acetona » con gas estándar de concentración 1 % en volumen de butano

Valor a mostrar:

 $\frac{1 \% \text{ (butano inyectado)}}{1.5 \% \text{ (LIE butano)}} \times 100 \times 0.90 \text{ (coeficiente butano/acetona)} = 60 \% \text{ LIE}$

Nota:

- Los valores LEL varían según las normas ISO 10156 o IEC 80079-20-1
- Los coeficientes tienen una precisión de ± 15 %

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

5 Mantenimiento periódico

Las verificaciones periódicas permiten mantener el material y la instalación en buen estado y asegurar el buen funcionamiento de la detección. Este capítulo describe las acciones preventivas a seguir así como su periodicidad. La inspección y el mantenimiento se realizarán siguiendo las normas vigentes EN60079-17 ó IEC 60079-17, EN 60079-29-2, EN 62990-2 ediciones vigentes u otras normas nacionales.

5.1 Periodicidad del mantenimiento

Los detectores de gas son aparatos de seguridad. TELEDYNE OLDHAM SIMTRONICS recomienda una prueba regular de las instalaciones fijas de detección de gas. Este tipo de prueba consiste en inyectar gas estándar sobre el detector a una concentración suficiente para accionar las alarmas preestablecidas. Está claro que esta prueba no puede en absoluto reemplazar una calibración del detector.

La frecuencia de las pruebas con gas depende de la aplicación industrial en donde se utiliza el detector. El control será frecuente en el mes siguiente al arranque de la instalación, y posteriormente podrá espaciarse si no se detecta una desviación importante. Si un detector no reacciona al contacto con el gas, es obligatoria una calibración. La frecuencia de las calibraciones se adoptará en función del resultado de las pruebas (presencia de humedad, temperatura, polvo, etc...); no obstante, ésta no será superior a un año.

El responsable del establecimiento será el encargado de implantar los procedimientos de seguridad de su instalación. TELEDYNE OLDHAM SIMTRONICS no puede responsabilizarse de su puesta en vigor.

Con el fin de que el material es todavía SIL certificada según la norma europea EN 50402, Requisitos para la función de seguridad del sistema fijo de detección de gas, debe respetar el período de mantenimiento de los detectores, como se muestra en el certificado adjunto al material.

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

5.2 Acciones

El mantenimiento periódico constará de las acciones siguientes:

- Desempolvado de la protección de la celda, exclusivamente con un trapo seco. No utilizar agua o solventes. Los cabezales o celdas muy empolvados deben ser reemplazados inmediatamente.
- Para la utilización en atmósferas explosivas polvorientas, el usuario deberá proceder a una limpieza completa y regular, a fin de evitar los depósitos de polvo. El espesor máximo admisible de la capa de polvo sobre el detector debe ser inferior a 5 milímetros.
- Reemplazo de la tornillería: En caso de reemplazo de la tornillería de la porción "d" antiexplosión del cuerpo sobre el contenedor, el usuario utilizará tornillos de calidad A4..
- Control del cero con aire puro.
- Control de la sensibilidad al gas y calibración eventual, conforme al capítulo 4.

6 Mantenimiento

El mantenimiento consiste principalmente en el cambio de celdas que ya no responden a las características metrológicas iniciales.

Las acciones descritas en este capítulo están reservadas a las personas autorizadas y capacitadas ya que son susceptibles de poner en entredicho la fiabilidad de la detección.

La inspección y el mantenimiento se realizarán siguiendo las normas EN60079-17 ó IEC 60079-17, EN 60079-29-2, EN 62990-2 ediciones vigentes u otras normas nacionales.

Los 4 mA están calibrados en fábrica. La calibración de este valor no deberá modificarse. El detector explosimétrico OLC 100 no está incluido por esta verificación.

6.1 Apertura de la cubierta

Esta etapa es necesaria para la verificación de 4 mA, de calibración a cero y la calibración del detector. Desatornillar la cubierta de la carcasa con la ayuda de una herramienta colocada en cruz.

Conviene tomar todas las medidas necesarias antes de abrir la cubierta de la carcasa particularmente si ésta está instalada en zona ATEX:

- La obtención de un permiso de fuego desde el servicio competente.
- La utilización continua de un explosímetro portátil.
- La utilización de un multímetro intrínsecamente seguro.
- Reducir la duración de la intervención al mínimo necesario.

Esta observación no concierne a las versiones intrínsecamente seguras utilizadas en zona de gases ATEX (ver Instrucciones particulares para el uso en atmósfera explosiva y sobre la seguridad de funcionamiento).

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

6.2 Verificación del generador de corriente.

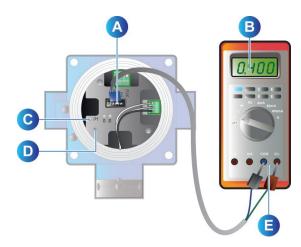


Figura 14: Verificación del generador de corriente

Si bien el la calibración ha sido efectuada en fábrica, es posible que sea necesario un apareamiento entre el trasmisor y el sistema de centralización. En ese caso, proceder como sigue:

- 1. Insertar las terminales verdes y azules del cable de medición respectivamente en los bornes + y del multímetro.
- 2. Insertar la terminal del cable de medición en el conector (rep. A).
- 3. Con un pequeño destornillador, apriete sobre el botón pulsador de calibración de 4 mA (rep. D).
 - El equipo enviará sobre la línea una señal de 4 mA. El multímetro muestra de 400 mV.
- 4. En el sistema de centralización (central de medición, autómata), verificar que la medición mostrada corresponda a 0% en la escala de medición.
- 5. Si se muestra una medida diferente, mantener apretado el botón pulsador y calibrador P1 (rep. C).
- 6. Libere el botón pulsador (rep. D). La calibración se ha completado, retirar el cable de medición.

6.3 Posibles anomalías

La siguiente tabla reúne las diferentes anomalías posibles de un detector:

6.3.1 Detector explosimétrico OLC 100

Falla ocurrida	Causa posible	Acción	
Ajuste de cero imposible	Celda	Cambiar la celda	
	Cable	Verificar el cable	
	Módulo de detección de la central	Verificar el módulo	
Calibración de la sensibilidad	Celda	Cambiar la celda	
imposible	Cable de enlace	Verificar el cable	
	Gas estándar inadecuado	Verificar el contenedor de gas estándar	
Indicación de la concentración	Descalibración	Ajuste de cero	
alta de gas		Calibración	

6.3.2 Detectores OLCT 100

Falla ocurrida	Causa posible	Acción	
Corriente de línea de 0 mA	Cable de enlace Alimentación Tarjeta electrónica	Verificar el cable Verificar la tensión Cambiar la tarjeta	
Corriente de línea < 1 mA	Celda	Encienda el detector hacia abajo y luego ponerlo en marcha (Off/On) Cambiar la celda Cambiar la tarjeta	
	Tarjeta electrónica Resistencia excesiva de línea Alimentación	Verificar el cable Verificar la tensión	
Corriente a 20mA bloqueados Line	La concentración de gas ha alcanzado el 100% LEL	Proceder de un ciclo de energía (Off/On) Cero y el span del detector	
Línea de corriente >23 mA	Encima rango	Ajustar la configuración cero y la sensibilidad Vuelva a colocar el sensor	
Ajuste de cero imposible	Celda Tarjeta electrónica	Cambiar la celda Cambiar la tarjeta	
Calibración de la sensibilidad imposible	Celda Tarjeta electrónica	Cambiar la celda Cambiar la tarjeta	
Indicación de la concentración alta de gas	Descalibración	Ajuste de cero Calibración	

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

6.4 Reemplazo de un bloque de celda

6.4.1 Standard Version

Siga en primer lugar las instrucciones del párrafo Apertura de la cubierta.

El bloque de celda integra la celda de detección propiamente dicha. Un bloque de celda no puede estar asociado más que con un detector definido. Una guía de montaje permite una colocación en su sitio del bloque de celda sin riesgo de error.

Figura 15: El bloque de celda acoplable (elemento negro) se aloja en la cubierta del cabezal.

(a) Tornillo de bloqueo

Ejecutar el siguiente procedimiento:

- Inhibir los testigos de alarma del sistema de centralización.
- Colocar el detector sin tensión
- Para una celda catalítica, desacoplar previamente el conector de la tarjeta.
- Aflojar el tornillo de bloqueo del cabezal de detección y desatornillar el cabezal de detección.
- Retirar el cabezal de detección (catalítico) o el bloque de celda defectuoso (OLC 100).
- Reemplazar la celda usada con una idéntica.
- Revisar la cubierta del cabezal de detección y reapretar el tornillo de bloqueo.
- Rehabilitar la alimentación del detector en el sistema de centralización.
- Proceder a las calibraciones del detector nuevo (ver capítulo 4).
- Cerrar nuevamente la cubierta del detector.
- Rehabilitar los testigos de alarma del sistema de centralización.

6.4.2 Versión de Alta Temperatura

Para la versión de alta temperatura, proceder como sigue.

- Inhibir los testigos de alarma del sistema de centralización.
- Colocar el detector sin tensión.
- Desatornillar el tornillo de sujeción (Figura 16, rep. B) de la cubierta del cabezal de detección y retirar ésta última.
- Reemplazar el cabezal de detección defectuoso y revisar el tornillo de sujeción (rep B) de la cubierta del cabezal de detección. Desconectar el cable de alta temperatura de la bornera (rep A) del cabezal de detección. Conectar el cable de alta temperatura a la bornera (rep A).

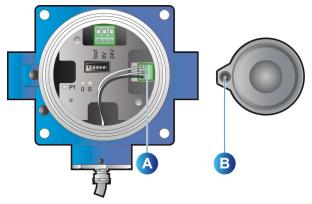


Figura 16: OLCT 100HT – elementos específicos relativos a la celda de alta temperatura.

- Revisar la cubierta del cabezal de detección y reapretar el tornillo de bloqueo.
- Rehabilitar la alimentación del detector en el sistema de centralización.
- Proceder a las calibraciones del detector nuevo (ver capítulo 4).
- Cerrar nuevamente la cubierta del detector.
- Rehabilitar los testigos de alarma del sistema de centralización

7 Accesorios

Accessory	Utilization	Illustration	Reference	
Herramientas del kit	Kit de herramientas para OLCT 100 que incluye copa de calibración, llave Allen, llave de desmontaje del sensor y el cable conector		6147879	
Humidificador kit	Se utiliza para la calibración de los transmisores de la semi- conductores		6335918	
Pipa de introducción de gas	Facilita la inyección de gas estándar en la celda de medición. Efecto sobre la medición:		6331141 Material	
	Medición similar a una medición en difusión natural.		plástico. Riesgo de cargas electrostáticas.	
	Efecto sobre el tiempo de respuesta: ninguno		Pásele un paño húmedo	
Cabezal para	Permite la medición en bypass		6327910	
circulación de gases	Efecto sobre la medición: Sin efecto si la calibración se efectúa en las mismas condiciones (pipa, flujo).	<u> </u>	Material plástico. Riesgo de cargas electrostáticas.	
	Efecto sobre el tiempo de respuesta: ninguno		Pásele un paño húmedo	
Dispositivo antiproyección	Protege el detector de las proyecciones de líquidos.		6329004	
	Efecto sobre la medición: Sin efecto		Material plástico. Riesgo de cargas	
	Efecto sobre el tiempo de respuesta: El tiempo de respuesta en difusión natural puede aumentar por algunos gases; consúltenos.		electrostáticas. Pásele un paño húmedo	
Dispositivo antiproyección acero inoxidable	Protege el detector de las proyecciones de líquidos.		6129010	
	Efecto sobre la medición: Sin			

Accessory	Utilization	Illustration	Reference	
	efecto			
	Efecto sobre el tiempo de respuesta: El tiempo de respuesta en difusión natural puede aumentar por algunos gases; consúltenos.			
Cabezal de	Permite la detección de los gases		6327911	
inyección de gas a distancia	ambientales simultáneamente con la presencia de una manguera de inyección de gas estándar.	△	Material plástico. Riesgo de cargas	
	Efecto sobre la medición: Sin efecto		electrostáticas. Pásele un paño	
	Efecto sobre el tiempo de respuesta: despreciable		húmedo	
Filtro de	Protege la entrada de gas de		6335975	
protección amovible	proyecciones y polvo. Efecto sobre la medición: Sin efecto, pero no puede utilizarse para la detección de O ₃ , HCL, HF, CL ₂ .		Material plástico. Riesgo de cargas electrostáticas. Pásele un paño	
	Efecto sobre el tiempo de respuesta: Tiempo de respuesta aumentado (consúltenos para los gases pesados de densidad >3 y las concentraciones débiles < 10 ppm).		húmedo	
Equipo de medición en ducto	Permite la medición de un gas circulando por un ducto. Necesita el uso del cabezal de circulación de gas Efecto sobre la medición: Sin efecto Efecto sobre el tiempo de respuesta: despreciable		6793322	
Esquema de montaje en techo	Permite la fijación de un detector al techo		6322420	
	Efecto sobre la medición: Sin efecto			

			MANUAL DEL USUARIO
Accessory	Utilization	Illustration	Reference
	Efecto sobre el tiempo de respuesta: Sin efecto		
Cubierta de protección contra	Protege al detector montado en el exterior de un edificio.		6123716
la intemperie	Efecto sobre la medición: Sin efecto		
	Efecto sobre el tiempo de respuesta: despreciable		
Muro de gas de montaje de colector	Permite que el sensor para detectar más rápidamente el gas. (Para montaje en pared)		6331169
	Efecto sobre la medición: Sin efecto		
	Efectos sobre el tiempo de respuesta: tiempo de respuesta puede aumentar hasta un 10%.		
Techo de toma de gas	Permite que el sensor para detectar más rápidamente el gas. (Montaje en el techo)		6331168
	Efecto sobre la medición: Sin efecto		
	Efectos sobre el tiempo de respuesta: tiempo de respuesta puede aumentar hasta un 10%.		
Placa de adaptación.	Permite fijar el detector en la misma posición sin tener que taladrar nuevamente		6793718
Kit de montaje de conductos			B301372

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

7.1 Prensaestopas

Utilización	Referencia
Juego de prensaestopas M20 para cable no blindado	6343493
Material Acero inoxidable	
Juego de prensaestopas M20 para cable no blindado.	6343499
Material Latón niquelado (no aconsejado en presencia de amoniaco y acetileno).	
Juego de prensaestopas M20 para cable blindado.	6343489
Material Acero inoxidable	
Juego de prensaestopas M20 para cable blindado.	6343495
Material Latón niquelado (no aconsejado en presencia de amoniaco y acetileno).	

8 Refacciones

Lista de recambios para los diferentes detectores

Referencia	Descripción
6314010	Celda catalítico 0-100 % LEL VQ1 para OLC 100 y OLCT 100 (solo versión normal)
6313994	Celda catalítico 0-100 % LEL 4F para OLCT 100 XPA(solo versión resistente al empobrecimiento; incompatible con la versión normal)
6314296	Celda MEMS 0-100% LEL para OLCT 100 XP (ISO % LEL)
6314295	Celda MEMS 0-100% LEL para OLCT 100 XP (IEC % LEL)
6314292	Celda infrarroja 0-5% VOL de CH₄ para OLCT 100 XPIR
6314293	Celda infrarroja 0-4.4% VOL de CH₄ para OLCT 100 XPIR
6314259	Celda infrarroja 0-2000 ppm de R32 para OLCT 100 XPIR
6314222	Celda infrarroja 0-2000 ppm de R134A para OLCT 100 XPIR
6314223	Celda infrarroja 0-2000 ppm de R407F para OLCT 100 XPIR
6314321	Celda infrarroja 0-2000 ppm de R452A para OLCT 100 XPIR
6314314	Celda infrarroja 0-100 % LEL de R454B para OLCT 100 XPIR
6314220	Celda infrarroja 0-100 % LEL de R1234YF para OLCT 100 XPIR
6314221	Celda infrarroja 0-2000 ppm de R1234YF para OLCT 100 XPIR
6314261	Celda infrarroja 0-5000 ppm de R1233ZD para OLCT 100 XPIR
6314260	Celda infrarroja 0-2000 ppm de R1234ZE para OLCT 100 XPIR
6314224	Celda infrarroja 0-2000 ppm de SF ₆ para OLCT 100 XPIR
6314142	Celda infrarroja 0-5000 ppm de CO ₂ para OLCT 100 XPIR
6314043	Celda infrarroja 0-5% VOL de CO ₂ para OLCT 100 XPIR
6314109	Celda infrarroja 0-10% VOL de CO ₂ para OLCT 100 XPIR
6314145	Celda infrarroja 0-100% VOL de CO ₂ para OLCT 100 XPIR
6314016	Celda electroquímica 0-30% de O_2 para OLCT 100 XP (la esperanza de vida de 2 años)
6314237	Celda electroquímica 0-30% de O_2 para OLCT 100 IS (la esperanza de vida de 2 años)

Referencia	Descripción
6314C5A	Celda electroquímica 0-30% de O_2 para OLCT 100 XP (la esperanza de vida de 5 años)
6314017	Celda electroquímica 0-100 ppm, 0-300 ppm y 0-1000 ppm de CO para OLCT 100
6314018	Celda electroquímica 0-30.0 ppm, 0-100 ppm de H ₂ S para OLCT 100
6314019	Celda electroquímica 0-1000 ppm de H ₂ S para OLCT 100
6314125	Celda electroquímica 0-5000 ppm de H ₂ S para OLCT 100
6314020	Celda electroquímica 0-100 ppm, 0-300 ppm y 0-1000 ppm de NO para OLCT 100
6314021	Celda electroquímica 0-10.0 ppm, 0-30.0 ppm de NO ₂ para OLCT 100
6314022	Celda electroquímica 0-10.0 ppm, 0-30.0 ppm y 0-100 ppm de SO_2 para OLCT 100
6314025	Celda electroquímica 0-10.0 ppm de Cl ₂ para OLCT 100
6314023	Celda electroquímica 0-2000 ppm de H ₂ para OLCT 100
6314188	Celda electroquímica 0-4%vol de H ₂ para OLCT 100
6314026	Celda electroquímica 0-30.0 ppm o 0-100 ppm de HCl para OLCT 100
6314028	Celda electroquímica 0-10.0 ppm y 0-30.0 ppm de HCN para OLCT 100
6314029	Celda electroquímica 0-100 ppm de NH3 para OLCT 100
6314211	Celda electroquímica 0-100 ppm de NH3 para OLCT 100 (baja temperatura -40°C)
6314030	Celda electroquímica 0-300 ppm y 0-1000 ppm de NH₃ para OLCT 100
6314031	Celda electroquímica 0-5000 ppm de NH3 para OLCT 100
6314033	Celda electroquímica 0-1.00 ppm de PH3 para OLCT 100
6314035	Celda electroquímica 0-3.00 ppm de ClO ₂ para OLCT 100
6314024	Celda electroquímica 0-30.0 ppm de ETO para OLCT 100
6314032	Celda electroquímica 0-1.00 ppm de AsH₃ para OLCT 100
6314027	Celda electroquímica 0-50.0 ppm de SiH₄ para OLCT 100
6314271	Celda electroquímica 0-1.00 ppm de COCl ₂ para OLCT 100
6314148	Celda electroquímica 0-100 ppm de C₂H₀S para OLCT 100
6314178	Celda electroquímica 0-100 ppm de CH₄S para OLCT 100
6314036	Celda tipo semiconductor para cloruro de metilo y de metileno para OLCT 100
6314037	Celda tipo semiconductor para cloruro de metilo y de metileno para OLCT 100

Referencia	Descripción
6314038	Celda tipo semiconductor para freón R134a, R11, R23, R143a, R404a, R507, R410a, R32, R407c, R408a para OLCT 100
6314039	Celda tipo semiconductor para etanol, tolueno, isopropanol, 2-butanona y xileno para OLCT 100
6451626	Tarjeta para OLC 100
6451646	Tarjeta para OLCT 100 XPIR (CO ₂)
6451700	Tarjeta para OLCT 100 XPIR (CH ₄ , R1234yf, R134a, R407f, SF ₆)
0451700	Tarjeta para OLCT 100 XP MEMS
6451621	Tarjeta para OLCT 100 SC
6451594	Tarjeta para OLCT 100 XP 0-100% LEL (versión normal)
6451696	Tarjeta para OLCT 100 XP 0-100% LEL (versión resistente al empobrecimiento)
6451623	Tarjeta para OLCT 100 IS o NO version
6451649	Tarjeta para OLCT 100 XP (CO, H ₂ S, H ₂ , NH ₃ , DMS, ethylmercaptant)
6451648	Tarjeta para OLCT 100 O2 (por OLCT 100 XP con 6314016 solamente)
6451681	Tarjeta para OLCT 100 O2 (por OLCT 100 XP con 6314C5A solamente)

9 Especificaciones técnicas

9.1 Características dimensionales

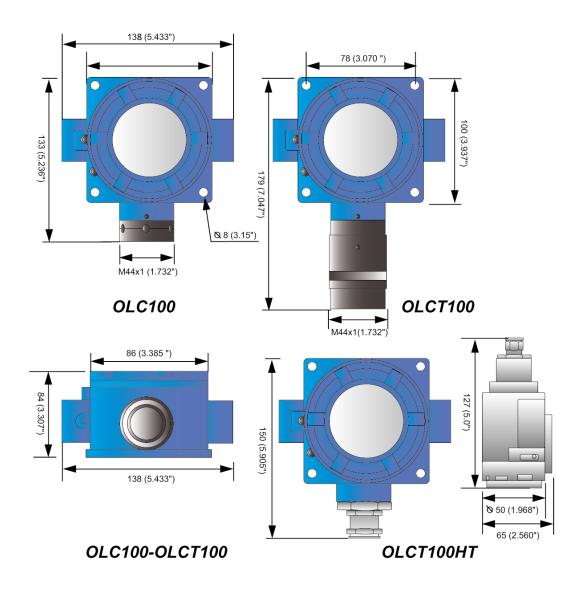


Figura 17: Características dimensionales de los detectores.

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

9.2 Detector completo

Tensión de alimentación en los bornes del detector:	 OLC 100: 340 mA (Por central de OLDHAM). OLCT 100 XP HT: 15.5 V a 32 V. OLCT 100 XP CAT: 15.5 V a 32 V. OLCT 100 XP IR: 13,5 V a 32 V. OLCT 100 XP MEMS: 11 V a 32 V. OLCT 100 XP EC: 11 V a 32 V. OLCT 100 IS EC: 11 V a 32 V. OLCT 100 XP SC: 15.5 V a 32 V.
Consumo promedio:	 OLC 100: 340 mA OLCT 100 XP HT: 100 mA OLCT 100 XP CAT: 110 mA OLCT 100 XP IR: 80 mA OLCT 100 XP MEMS: 30 mA OLCT 100 XP EC: 23,5 mA OLCT 100 IS EC: 23,5 mA OLCT 100 XP SC: 100 mA
Corriente de salida (señal)	 Fuente de corriente codificada de 0 a 23 mA (no aislada). Corriente 4 a 20mA linear reservada a la medición 0 mA: Por defecto electrónico o ausencia de alimentación. <1 mA: Por defecto. 2 mA: Modo de inicialización Pegado a 20 mA: la concentración de gas combustible ha alcanzado el 100% LEL.
Cable - tipo	 Detector explosimétrico: Blindado 3 hilos activos. Detector explosimétrico HT: Blindado 3 hilos activos. OLCT 100 XP electroquímico: Blindado 2 hilos activos. OLCT 100 IS electroquímico: Blindado 2 hilos activos. (cable de IS) Detector infrarrojo: Blindado, 3 hilos activos. Detector MEMS: Blindado, 3 hilos activos. Detector de semiconductor: Blindado, 3 hilos activos.
Entrada de cable	M20x1, 5 (glándula de cable no suministrado) o ¾ NPT.
Diámetros máximos de cable de entrada al detector:	12 mm
Compatibilidad	Conforme EN50270 :06 (typ2)

electromagnética:					
Índice de protección	IP66.				
Aprobaciones:	Conforme a la directiva europea ATEX 2014/34/UE (ver declaración adjunta) y al esquema IEC Ex para los detectores a prueba de explosión.				
	SIL 2 según EN50402: 05 / EN61508: 11*				
	Rendimientos metrologicos según EN 60079-29-1:16 (VQ1 catalítico)				
	Rendimientos metrologicos según EN 50104:10 (celda Oxígeno)				
Peso:	• OLC 100: 0,950 kg				
	• OLCT 100 XP HT: 1,8 kg				
	• OLCT 100 XP CAT: 1,0 kg				
	• OLCT 100 XP IR: 1,1 kg				
	• OLCT100 XP MEMS: 1,1 kg				
	• OLCT 100 XP EC: 1,1 kg				
	• OLCT 100 IS EC: 1,1 kg				
	• OLCT 100 XP SC: 1,1 kg				
Materiales:	Aluminio pintado con epóxico. Acero inoxidable 316 opcional.				

^{*} Depende del gas

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

9.3 Cabezal catalítico (OLCT 100 XP)

Rango de medición:	0 – 100 % LEL
Principio de medición:	Filamentos catalíticos
Precisión:	Ver tabla a continuación
Rango de temperatura:	Ver tabla a continuación
Humedad relativa:	0 a 95% RH (humedad relativa sin condensación)
Presión:	Atmosférica ± 10%
Tiempo de respuesta:	T ₅₀ = 6 segundos. T ₉₀ = 15 segundos para metano
Duración de vida útil estimada:	48 meses
Condiciones de almacenamiento:	-40 a 70 °C, 20 a 60 %RH, 1 bar ± 10%, 6 meses máximo
Tiempo de precalentamiento (max):	2 horas a la primera puesta bajo tensión.

Características específicas

Tipo de celda.	Precisión	Rango de temperatura de funcionamiento
Celda antiveneno 4F	1 % LIE entre 0-70 %LIE	-40 α +70°C
(celda sin posicionador)	2 % de la medición entre 71 y 100% LIE	
Celda VQ1	1 % LIE entre 0-70 %LIE	-40 α +70°C
(celda con posicionador)	OLCT 100 : 2 % de la medición entre 71 y 100% LIE	
	OLC 100 : 5 % de la medición entre 71 y 100 % LIE	
Celda VQ1, bloque de	1 % LIE entre 0- 70 %LIE	-20 a +200°C
alta temperatura	2 % de la medición entre 71 y 100% LIE	

Localizador de celda VQ1

Celda antiveneno 4F

Figura 18: Localizador de celda VQ1.

9.4 Cabezales toximétricos (OLCT 100 XP y OLCT 100 IS)

Principio de medición: Celda electroquímica

Presión: Atmosférica ± 10%

Tipo de gas.		Rangos de medición: ppm	Versión XP	Versión IS	Rango de temperatura ºC	% RH (20°C)	Precisión (ppm)	Duración de vida (media):	Tiempos de respuesta T50 / T90 (s)	Condiciones y duración de almacenami ento:	Precalent amiento
AsH ₃	Arsénico	1,00		•	-20 a +40	20 - 90	+/- 0,05	18	30/120	(1)	1
CH ₂ O	Formaldehído	50,0		•	-20 a +50	15 - 90	+/- 1,5	36	50/240	(1)	36
Cl ₂	Cloro	10,0		•	-20 a +40	10 - 90	+/- 0,4	24	10/60	(1)	1
CIO ₂	Dióxido de cloro	3,00		•	-20 a +40	10 - 90	+/- 0,3	24	20/120	(1)	1
со	monóxido de carbón	100 300 1000	•	•	-20 a +50	15 - 90	+/- 3 (rango 0-100)	36	15/40	(1)	1
COCl ₂	Fosgeno	1,00		•	-20 a +40	15 - 90	+/- 0,05	12	60/180	(2)	1
ETO	Óxido de etileno	30,0		•	-20 a +50	15 - 90	+/- 1	36	50/240	(1)	36
H ₂	Hidrógeno	2000	•	•	-20 a +50	15 - 90	+/-5 %	24	30/50	(1)	1
H₂S	Ácido sulfhídrico	30,0 100 1000	•	•	-40 a +50	15 - 90	+/- 1,5 (rango 0-30)	36	15/30	(1)	1
HCI	Ácido sulfhídrico	30,0 100		•	-20 a +40	15 - 95	+/- 0,4 (rango 0-10)	24	30/150	(1)	24
NH₃	Amoniaco	1000	•	•	-40 a +40	15 - 90	+/- 20	24	/	(1)	1
NH₃	Amoniaco	100 1000 5000	•	•	-20 a +40	15 - 90	+/- 5 +/- 20 +/-150 ou 10%	24	50/90 50/90 50/120	(1)	1
NO	Monóxido de nitrógeno	100 300 1000	•	•	-20 a 50	15 - 90	+/- 2 (rango 100)	36	10/30	(1)	1
NO ₂	Dióxido de nitrógeno	10,0 30,0		•	-20 a 50	15 - 90	+/- 0,8	24	30/60	(1)	12
O ₂	Oxígeno (> 2 años)	0-30% vol	•	•	-20 a +50	15 - 90	+/- 0,5% vol. de 0 a + 50 ° C -1,25% vol. máximo de -20 ° C a 0 ° C	30	6/15	(1)	1
O ₂	Oxígeno (> 5 años)	0-30% vol	•		-40 a +50	15 - 90	+/- 2% de la medición entre -10° C y + 40° C(3)	60	15/25	(1)	1,5
PH₃	Fosfina	1,00		•	-20 a +40	20 - 90	+/- 0,05	18	30/120	(1)	1

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

Tipo de gas.		Rangos de medición: ppm	Versión XP	Versión IS	Rango de temperatura ºC	% RH (20°C)	Precisión (ppm)	Duración de vida (media):	Tiempos de respuesta T50 / T90 (s)	Condiciones y duración de almacenami ento:	amiento
SiH₄	Silano	50,0		•	-20 a +40	20 - 95	+/- 1	18	25/120	(1)	1
	Breet L	10,0		•			. / 0.7				
SO_2	Dióxido de azufre	30,0		•	-20 a +50	15 - 90	+/- 0,7 (rango 0-10)	36	15/45	(1)	1
	GZ0116	100		•			(rungo o-ro)				

(1)	4 – 20 °C
	20 - 60 % RH
	1 bar ± 10 %
	6 meses máximo

(2) 4 - 20 °C 20 - 60 % RH 1 bar ± 10 % 3 meses máximo (3) +/- 5máximo de la medición sobre el resto del rango de temperatura según el estándar metrológico EN50104

9.5 Cabezales de semiconductor (OLCT 100 XP)

Principio de medición:	semiconductor
Rango de temperatura:	-20 °C a +55 °C
Humedad relativa:	20 a 95% RH (humedad relativa sin condensación)
Presión:	Atmosférica ± 10%
Duración de vida útil estimada:	40 meses
Condiciones de almacenamiento:	-20 a 50 °C, 20 a 60 %RH, 1 bar ± 10%, 6 meses máximo
Tiempo de precalentamiento (max):	4 horas a la primera puesta bajo tensión.

Tipo de gas.	Rango de medición	Precisión	T_{50} / T_{90} (s)	
Cloruro de metilo	500 ppm	+/- 15% (20 a 70% FS)	25/50	
Cloruro de metileno	500 ppm	,(20 2)		
Freón R12	1 %vol			
Freón R22	2000 ppm	+/- 15% (20 a 70% FS)	25 / 50	
Freón R123	2000 ppm	+/- 13% (20 d / 0% 13)	23 / 30	
FX56	2000 ppm			
Freón R134A	2000 ppm			
Freón R11	1 % vol			
Freón R23	1 % vol			
Freón R143A	2000 ppm			
Freón R404A	2000 ppm	+/- 15% (20 a 70% FS)	25 / 50	
Freón R507	2000 ppm	+/- 13% (20 d / 0% F3)	23 / 30	
Freón R410A	1000 ppm	1000 ppm		
Freón R32	1000 ppm			
Freón R407C	1000 ppm			
Freón 408A	4000 ppm			
Etanol	500 ppm			
Tolueno	500 ppm			
Isopropanol	500 ppm			
2-Butanona (MEK)	500 ppm	+/- 15% (20 a 70% FS)	25 / 50	
Xileno	500 ppm			
HFO-1234YF	1000 ppm			
HFO-1234ZE	1000 ppm			

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

9.6 Cabezal infrarrojo (OLCT 100 XPIR)

Principio de medición:	absorción infrarroja
Presión:	1 bar ± 10 %

Ti	ipo de gas.	Rangos de medición: ppm	Versión XP	Rango de temperatura °C	% RH	Precisión (ppm)	Duración de vida (media):	Tiempos de respuesta T50 / T90 (s)	Condicio nes almacena miento:	Precalent amiento max (h)
CO ₂	dióxido de carbono	5000 5 % 10% 100%	•	-25 a +50	15 - 90	+/- 150 +/- 0.15% +/- 0.3% +/- 3%	60	15/30	(6)	2
CH₄	Metano	4,4% Vol. 5%vol.	•	-40 a +60	0 - 90	+/- 3%	60	25/70	(5)	2
R1233ZD		5000	•	-20 a +50	0 - 95	+/- 40 (0 a 50% FS) +/- 100 (50 a 100% FS)	60	40/170	(5)	2
R1234YF	Tetrafluoropropeno	2000 0-100% LEL	•	-20 a +50	0 - 95	+/-40 (0 a 50% FS) +/-100 (50 a 100% FS) +/-2% (0 a 50% LEL) +/-5% (50 a 100% LEL)	60	25/120 30/115	(5)	2
R1234ZE		2000	•	-20 a +50	0 - 95	+/- 40 (0 a 50% FS) +/- 100 (50 a 100% FS)	60	40/170	(5)	2
R32		2000	•	-20 a +50	0 - 95	+/- 40 (0 a 50% FS) +/- 100 (50 a 100% FS)	60	40/170	(5)	2
R134A	Tetrafluoroethano	2000	•	-20 a +50	0 - 95	+/-40 (0 a 50% FS) +/- 100 (50 a 100% FS)	60	40/170	(5)	2
R407F		2000	•	-20 a +50	0 - 95	+/- 40 (0 a 50% FS) +/- 100 (50 a 100% FS)	60	40/170	(5)	2
R449A		2000	•	-20 a +50	0 - 95	+/- 40 (0 a 50% FS) +/- 100 (50 a 100% FS)	60	40/170	(5)	2
R452A		2000	•	-20 a +50	0 - 95	+/-40 (0 a 50% FS) +/- 100 (50 a 100% FS)	60	40/170	(5)	2
R454B		0-100% LEL	•	-20 a +50	0 - 95	+/- 2% (0 a 50% LEL)	60	30/115	(5)	2
SF ₆	Hexafloruro de azufre	2000	•	-20 a +50	0 - 95	+/- 40 (0 a 50% FS) +/- 100 (50 a 100% FS)	60	50/160	(5)	2

_				
	(5)	-40 – 85 °C	(6)	4 – 20 °C
		0 – 80 % RH		10 - 60 % RH
		6 meses máximo		6 meses máximo

9.7 Cabezal MEMS (OLCT 100 XP)

Rangos de medición:	0-100% LEL					
Principio de medición:	Sistemas microelectromecánicos, tecnología de					
	conductividad térmica					
Presión:	80 – 120 kPa					
	Atmosférica ± 20%					
Rango de temperatura:	-40 a +60°C					
Precisión:	H ₂ : +/- 5 % LEL, CH ₄ +/- 3 % LEL					
Humedad relativa:	0 a 95 % RH (humedad relativa sin condensación)					
Tiempos de respuesta:	H ₂ : T90 <20s, CH ₄ : T90 <22s					
Duración de vida útil estimada:	15 años					
Condiciones almacena miento::	-40 a 70 °C, 20 a 60 %RH, 1 bar ± 10%, 6 meses					
	máximo					
Precalentamiento (max) :	2 horas desde el primer encendido					

Las precisiones que se muestran en la siguiente tabla se logran sin calibración específica del gas objetivo. Por tanto, los niveles de precisión son mucho mejores que los obtenidos con un sensor catalítico o de infrarrojos.

Tipo de gas.		LEL (%Vol.) (ISO 10156)	Precisión a 50% LEL (ISO 10156)	LEL (%Vol.) (IEC80079-20-1)
C ₄ H ₁₀	Butano	1.8	±5 %LEL	1.4
C ₂ H ₆	Etano	3.0	±5 %LEL	2.4
H ₂	Hidrógeno	4.0	±5 %LEL	4.0
HC(CH₃)₃	Isobutano	1.8	±5 %LEL	1.3
C ₄ H ₈	Isobutileno	1.8	±5 %LEL	1.8
C ₃ H ₈ O	Isopropanol	2.0	±10 %LEL	2.0
CH₄	Metano	5.0	±3 %LEL	4.4
C ₄ H ₈ O	MEK	1.4	±5 %LEL	1.5
C ₅ H ₁₂	Pentano	1.5	±5 %LEL	1.1
C₃H ₈	Propano	2.1	±6 %LEL	1. <i>7</i>
C ₃ H ₆	Propileno	2.4	±5 %LEL	2.0
C ₃ H ₆ O	Acetona	2.5	+20 %LEL	2.5

Tipo de gas.		LEL (%Vol.) (ISO 10156)	Precisión a 50% LEL (ISO 10156)	LEL (%Vol.) (IEC80079-20-1)
C ₂ H ₄	Ethileno	2.7	-12 %LEL	2.3
C ₇ H ₁₆	Heptano	1.1	±12 %LEL	0.85
C ₈ H ₁₈	Octano	1.0	±12 %LEL	0.8
C ₈ H ₈	Estireno	1.1	-20 %LEL	1.0
C ₇ H ₈	Tolueno	1.2	±12 %LEL	1.0
C ₈ H ₁₀	Xileno	1.1	±12 %LEL	1.0

10 Instrucciones particulares para el uso en atmósfera explosiva y sobre la seguridad de funcionamiento

10.1 Generalidades

Los detectores OLC/OLCT 100 están de acuerdo a las exigencias de la Directiva Europea ATEX 2014/34/UE relativas a las atmósferas explosivas de gases y polvos. Gracias a sus rendimientos metrológicos probados por el organismo acreditado INERIS (vigente), los detectores transmisores OLC/OLCT 100 destinados a la medición de gases explosivos están clasificados como dispositivos de seguridad bajo el criterio de la Directiva Europea y pueden por lo tanto contribuir a limitar los riesgos de explosión.

Las informaciones descritas en los párrafos siguientes deben ser tomadas en cuenta y respetadas por el responsable de instalación del equipo en el sitio. Referirse a las prescripciones de la Directiva Europea ATEX 1999/92/CE enfocadas a mejorar la protección en materia de seguridad y salud de los trabajadores expuestos a los riesgos de las atmósferas explosivas.

Los detectores OLC/OLCT 100 son conformes con las exigencias del esquema de certificación internacional IEC Ex relativas a las atmósferas explosivas de gases y polvos.

Se pueden usar dos modos de protección:

- El modo de protección para alojamiento 'db' a prueba de explosión para atmósferas explosivas gaseosas o alojamiento para atmósferas explosivas polvorientas.
- El modo de protección intrínsecamente seguro "ia" para atmósferas de gases o polvos explosivos.

10.2 Entradas de cables

Prensaestopas será certificada a prueba de fuego (d o db) para su uso en atmósferas explosivas. Protección de entrada será mayor o igual a IP66. Prensaestopas se montarán de acuerdo con la norma IEC / EN 60079-14 estándar, la edición vigente y los requisitos adicionales de los estándares locales. Serán de M20x1.5 o ¾ tipo NPT. En el caso de una rosca ISO (M20), el trabajo debe ser al menos 5 hilos. Los cables utilizados deben tener un rango de temperatura de funcionamiento igual o superior a 80 ° C.

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

10.3 Uniones roscadas

Los valores de las juntas antideflagrantes son diferentes de los indicados en las tablas de la norma EN 60079-1. TELEDYNE OLDHAM SIMTRONICS no permite reparaciones y rechaza toda responsabilidad por modificaciones del material.

Las uniones roscadas del OLC(T) 100 pueden ser lubricadas a fin de mantener la protección a prueba de explosión. Sólo se utilizarán lubricantes no endurecibles o agentes no corrosivos sin solventes volátiles. Atención: Los lubricantes a base de silicona están estrictamente prohibidos, ya que se comportan como agentes contaminantes para los elementos de detección del OLC(T) 100.

10.4 Riesgo electrostático

Los accesorios de material plástico pueden presentar un riesgo de descarga electrostática. No los frote con un paño seco. Límpielos con agua y páseles únicamente un paño húmedo.

10.5 Rendimiento de la metrología para la detección de gases inflamables

VQ1 detectores versión filamento estándar OLC/OLCT 100 ajusten a las normas IEC / EN 60079-29-1, los requisitos de idoneidad para el funcionamiento de los detectores de gases inflamables, categoría 0 a 100% LEL Grupo II, gas de referencia 0-100% LEL de metano y propano .

Estos detectores se clasifican como dispositivos de seguridad de acuerdo con la Directiva ATEX 2014/34/UE y puede, por lo tanto, contribuyen a limitar los riesgos de explosión. Para que esto sea así, deben conectarse a tipo TELEDYNE OLDHAM SIMTRONICS MX 15, MX 32, MX 42 A, MX 48, MX 43, MX 52 y MX 62 unidades de detección, o bien a sistemas de medición certificados según las normas IEC / EN 60079-29-1 y compatibles con sus características (véase la curva de transferencia).

10.6 Curva de transferencia

La curva siguiente da el valor de corriente de salida de los transmisores en función de la concentración de gas. En casos donde el usuario conecte el transmisor a una central diferente que la de TELEDYNE OLDHAM SIMTRONICS, se debe asegurar que la curva de transferencia sea compatible con las características de entrada de su equipo, a fin de que la información enviada por el transmisor sea interpretada correctamente. Así mismo, la central deberá proporcionar una tensión de alimentación suficiente para mantener la tensión en el cable.

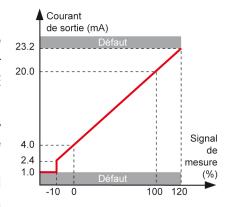


Figura 19: Curva de transferencia para un detector de 4-20 mA.

DETECTOR EXPLOSIMETRICO TRANSMISOR
PARA GASES TOXICOS Y OXIGENO
MANUAL DEL USUARIO

10.7 Condiciones específicas de uso

- En el conector J2, se utilizará únicamente para la conexión de equipos certificados para uso en atmósferas explosivas del grupo IIC o IIIC; este equipo no debe tomar la forma de un generador de tensión o de un generador de corriente.
- La conexión del detector de gas tipo OLCT100 IS al equipo asociado debe realizarse de acuerdo con los parámetros eléctricos indicados en este certificado, de acuerdo con los requisitos de los circuitos intrínsecamente seguros.
- Las juntas antideflagrantes tienen valores diferentes a los especificados en las tablas de la norma EN 60079-1, para cualquier reparación contactar con el fabricante.
- El sensor remoto del detector de gas OLCT 100 HT se puede utilizar en los siguientes rangos de temperatura ambiente:
 - de -20°C a 200°C con clase de temperatura T2,
 - de -20°C a 180°C con clase de temperatura T3,
 - de -20°C a 110°C con clase de temperatura T4.

10.8 Condiciones específicas de uso de FM

10.8.1 detectores *OLCT 100*

- El detector OLCT 100 cumple con el estándar de rendimiento de detección de gas relevante que figura en la etiqueta cuando se conecta a un panel de control de detección de gas que también ha sido evaluado según el mismo estándar de rendimiento de detección de gas.
- La evaluación del detector según la norma ANSI/FM 60079-29-1 se ha realizado sin tener en cuenta la clasificación IP del gabinete.

10.9 Condiciones específicas de uso de CSA

10.9.1 Advertencia para los modelos OLCT 100-XP

"ADVERTENCIA – NO ABRIR CUANDO ESTÉ ENERGIZADO"

"ADVERTENCIA: SE DEBE INSTALAR UN SELLO DENTRO DE 50 mm (2") DEL CAJA", para gabinetes de aluminio.

"ADVERTENCIA: SE DEBE INSTALAR UN SELLO DENTRO DE 450 mm (18") DEL CAJA", para gabinetes de acero inoxidable.

10.9.2 Advertencia para OLCT 100-IS

"ADVERTENCIA: La sustitución de componentes puede afectar la seguridad intrínseca"

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

10.9.3 Condiciones de las certificaciones

La comunicación inalámbrica no se utilizará para funciones relacionadas con la seguridad y solo se podrá utilizar para la adquisición de datos.

Para OLCT-100-XP

- 1. Las entradas de conductos con rosca métrica deben estar equipadas con adaptadores métricos a NPT debidamente certificados.
- 2. El cableado utilizado para conexiones externas deberá tener una clasificación de al menos 20 K más que la temperatura ambiente máxima.
- 3. El equipo deberá ser alimentado por una fuente de energía Clase 2 o limitada de acuerdo con CAN/CSA C22.2 No 61010-1 y ANSI/UL 61010-1.
- 4. Se deben tomar medidas para evitar la ignición por impacto mecánico o fricción para los modelos alojados en carcasa de aluminio.
- 5. El sello del conducto se instalará dentro de los 50 mm (2") del equipo alojado en un gabinete de aluminio y dentro de los 450 mm (18") del equipo alojado en un gabinete de acero inoxidable.
- 6. Las juntas ignífugas no se repararán.
- 7. OLCT100XP cumple con el rendimiento CSA (CSA 60079-29-1) solo cuando se conecta a una unidad de control que cumple con el rendimiento OLDHAM.
- 8. El rendimiento de la detección de gases inflamables no se evalúa en función del entorno de polvo ni de las condiciones ambientales.
- 9. La versión de firmware asociada con la detección de gas combustible según los requisitos de 60079-29-1 es V.013.

Para OLCT-100-IS

- 1. Se deben tomar medidas para evitar la ignición por impacto mecánico o fricción para los modelos alojados en carcasa de aluminio.
- 2. El cableado utilizado para conexiones externas deberá tener una clasificación de al menos 20 K más que la temperatura ambiente máxima.

10.9.4 Calificación

Para OLCT-100-XP

Clase I, Div. 1, Groupos A, B, C y D, T6;

Ex db IIC T6 Gb;

Class I, Zona 1 AEx db IIC T6 Gb

Para OLCT-100-IS

Clase I, Div. 1, Groupos A, B, C y D, T4;

Ex ia IIC T4 Ga;

Clase I, Zona O AEx ia IIC T4 Ga

DETECTOR EXPLOSIMETRICO TRANSMISOR
PARA GASES TOXICOS Y OXIGENO
MANUAL DEL USUARIO

10.9.5 Standards

CAN/CSA-C22.2 No. 61010-1-12

UL Std. No. 61010-1 3ª edición.

CSA-C22.2 N°. 30: 2020

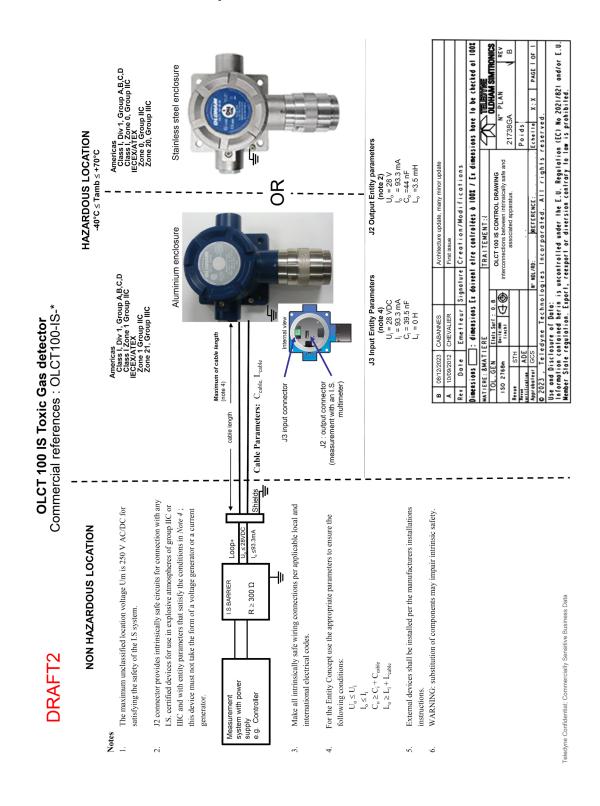
UL 1203: 2020

CAN/C22.2 No. 60079-0, 6ª edición: 2015

UL 60079-0: 6º Ed.: 2013

CAN/CSA-C22.2 No. 60079-1, edición 7: 2016

UL 60079-1 Ed. 7: 2015


CAN/CSA-C22.2 No. 60079-11, 6º edición: 2014

UL 60079-11, 6^a Ed.

CAN/CSA-C22.2 No. 60079-29-1 edición 2: 2017

UL 60079-29-1 edición 2

10.10 Plano de instalación para OLCT100IS

DETECTOR EXPLOSIMETRICO TRANSMISOR
PARA GASES TOXICOS Y OXIGENO
MANUAL DEL USUARIO

10.11 Límites de uso

Las celdas de detección de gases incluyen ciertas limitaciones que deben respetarse obligatoriamente. (ver capítulo 10)

10.11.1 Presencia de compuestos específicos

- Los vapores de compuestos de silicio o azufrosos pueden afectar las celdas de detección de gases de principio termocatalítico y por lo tanto falsear las mediciones. Si las celdas han estado expuestas a este tipo de compuestos, será necesaria una revisión o una calibración.
- Las concentraciones altas de solventes orgánicos (alcoholes, solventes aromáticos, etc.)
 o la exposición a cantidades de gases superiores al rango de medición especificado pueden dañar las celdas electroquímicas. Se recomienda una revisión o calibración.
- En presencia de altos contenidos de dióxido de carbono (CO₂ < 1% vol), las celdas electroquímicas de medición de oxígeno pueden subestimar el contenido de oxígeno presente (subestimación de 0,1 a 0,5 % O₂).

10.11.2 Funcionamiento bajo contenidos débiles de oxígeno.

- Se puede producir una subestimación de la medición cuando una celda de detección de principio electroquímico se utiliza en una atmósfera que contenga menos de un 1% de oxígeno por más de una hora.
- Se puede producir una subestimación de la medición cuando una celda de detección de principio termocatalítico se utiliza en una atmósfera que contenga menos de un 10 % de oxígeno.
- Se puede producir una subestimación de la medición cuando una celda semiconductora se utiliza en una atmósfera que contenga menos de un 18 % de oxígeno.
- Si se utiliza un sensor detector MEMS en una atmósfera que comprende menos del 15 % de oxígeno, la medición puede ser una subestimación (15 % Vol. de oxígeno en el aire da una lectura de -5 % LEL, 5 % Vol. de oxígeno en el aire da una lectura de -12% LEL).

10.12 Seguridad de funcionamiento

El detector está certificado por INERIS en conformidad con las exigencias de la capacidad SIL 2. Esta norma aplicable desde 2005 abarca el material eléctrico para la detección y la medición de gases o vapores combustibles o tóxicos o del oxígeno y define las exigencias relativas a la función de seguridad de los sistemas fijos de detección de gas.

El detector se ha desarrollado en conformidad con la norma EN/CEI 61508 y EN50402.

La función de protección del detector OLC/OLCT 100 es la detección de gases combustibles mediante la tecnología catalítica y el envío de una corriente de 4-20 mA proporcional a la concentración de gas expresada en porcentaje del LIE, respectivamente de 0 a 100% LIE. En

DETECTOR EXPLOSIMETRICO TRANSMISOR PARA GASES TOXICOS Y OXIGENO MANUAL DEL USUARIO

caso de falla, la corriente de salida pasará en posición de receso con una corriente inferior o igual a 1 mA o superior o igual a 23 mA.

La función de protección ya no está asegurada:

- A la entrada de tensión y durante el tiempo de estabilización de la celda de medición y las pruebas de arranque, la salida de corriente estará en modo de mantenimiento (2 mA).
- Cuando el botón pulsador es presionado (forzando a 4 mA), la salida de corriente se fijará en 4 mA.

10.13 Datos de fiabilidad

Estos datos se basan en la retroalimentación de las experiencias de campo. El análisis de las informaciones registradas durante las intervenciones de nuestra red técnica nos permite determinar las probabilidades de falla bajo condiciones normales de uso.

Tipo de gas.	Principio de medición		λdu	PFD _{AVG}	Período de prueba	SFF
Combustibles	Catalítico (VQ1)	SIL 2	1,89 10 ⁻⁷	8,3 10-4	12 meses	92,9%
Oxígeno (*)	Electroquímico	SIL 2	0,74 10-6	1.62 10-3	6 meses	60% to 90%

(*)Software y hardware de acuerdo con el certificado INERIS . Sensores de datos de acuerdo con probada en uso.

MTTR: 24Horas

10.14 Condiciones especiales de uso

En caso de exposición a concentraciones de gases por encima del rango de medición, es obligatorio llevar a cabo una inspección o calibración del detector de gas.

En el caso de un cambio de posición del detector, es necesario volver a calibrar.

11 Annexe: Ordering Information

11.1 Gas List

Please find below the list of gases that the OLC/OLCT 100 detector can detect.

	·
Gas Code	Gas
001	Methane 0-100 % LEL
002	Methane 0-100% LEL (4.4% vol)
003	Hydrogen 0-100% LEL
004	Butane 0-100% LEL
005	Propane 0-100% LEL
006	Ammoniac 0-100% LEL
007	Ethyl Acetate 0-100% LEL
800	Butyl Acetate 0-100% LEL
009	Methyl acetate methyle 0-100% LEL
010	Acetone 0-100% LEL
011	Acetonitrile 0-100% LEL
012	Acetylene 0-100% LEL
013	Acrylic acid 0-100% LEL
014	Acroleine 0-100% LEL
015	Butyl acrylate 0-100% LEL
016	Ethyl Acrylate 0-100% LEL
017	Acrylonitrile 0-100% LEL
018	Benzene 0-100% LEL
019	1.3-Butadiene 0-100% LEL
020	Butanol (isobutanol) 0-100% LEL
021	2-Butanone 0-100% LEL
022	Cumene 0-100% LEL
023	Cyclohexane 0-100% LEL
024	Cyclohexanone 0-100% LEL
025	Dimethylether 0-100% LEL
026	Dodecane 0-100% LEL
027	Ethane 0-100% LEL
028	Ethanol 0-100% LEL
029	Ether (diethylether) 0-100% LEL
030	Ethylene 0-100% LEL
031	Formaldehyde 0-100% LEL
032	LPG 0-100% LEL
033	Diesel 0-100% LEL
034	Natural gas 0-100% LEL
035	Heptane 0-100 % LEL

Gas Code	. USUARIO Gas					
036	Hexane 0-100% LEL					
038	Isobutane 0-100% LEL					
039	Isobutene 0-100% LEL					
040	Isopropanol 0-100% LEL					
041	Kerosene (JP4) 0-100% LEL					
042	Methyl Methacrylate 0-100% LEL					
043	Methanol 0-100% LEL					
044	Methylamine 0-100% LEL					
045	Naphta 0-100% LEL					
046	Naphtalene 0-100% LEL					
047	Nonane 0-100% LEL					
048	Octane 0-100% LEL					
049	Ethylene Oxide (epoxyethane) 0-100% LEL					
050	Propylene Oxide (Epoxypropane) 0-100% LEL					
051	Pentane 0-100% LEL					
052	Propylene 0-100% LEL					
054	Styrene 0-100% LEL					
055	Gasoline Lead free 0-100% LEL					
056	Toluene 0-100% LEL					
057	Trimethylamine 0-100% LEL					
058	White spirit 0-100% LEL					
059	Xylene 0-100% LEL					
064	MIBK 0-100% LEL					
065	R1234yf 0-100% LEL					
066	DMA 0-100% LEL					
068	Chloroethane 0-100% volume					
070	Chloromethane 0-100% LEL					
072	Cyclopentane 0-100% LEL					
074	Allyl alcohol 0-100% LEL					
075	R1234ze 0-100% LEL					
078	R454b 0-100% LEL					
200	Oxygen O ₂ (electrochemical) 0-30% vol (esperanza de vida de 2 años)					
272	Oxygen O_2 (electrochemical) 0-30% vol (esperanza de vida de 5 años)					
282	Oxygen O2 (electrochemical) 0-10% vol (esperanza de vida de 5 años)					
203	CO, 0-100 ppm					
204	CO, 0-300 ppm					
205	CO, 0-1,000 ppm					
213	H ₂ S, 0-30 ppm					
214	H ₂ S, 0-100 ppm					
215	H ₂ S, 0-1,000 ppm					
249	H_2S , 0-5000 ppm					
216	NO, 0-100 ppm					

		MANUAL DEL USUARIO						
Gas Coo	de Gas							
217	NO, 0-300 ppm							
218	NO, 0-1,000 ppm							
219	NO ₂ , 0-10 ppm							
220	NO ₂ , 0-30 ppm							
221	SO ₂ , 0-10 ppm							
222	SO2, 0-30 ppm							
223	SO ₂ , 0-100 ppm							
224	Cl ₂ , 0-10 ppm	Cl ₂ , 0-10 ppm						
259	Cl ₂ , 0-20 ppm							
225	H ₂ , 0-2,000 ppm							
268	H ₂ , 0-4% vol							
227	HCl, 0-30 ppm							
228	HCl, 0-100 ppm							
229	HCN, 0-10 ppm							
230	HCN, 0-30 ppm							
231	NH₃, 0-100 ppm							
273	NH ₃ , 0-300 ppm							
232	NH ₃ , 0-1,000 ppm (-20°C hasta +40°C)							
265	NH ₃ , 0-1,000 ppm (-40°C hasta +40°C))							
233	NH ₃ , 0-5,000 ppm							
235	ClO ₂ , 0-3 ppm							
252	CO ₂ , 0-5000 ppm							
239	CO ₂ , 0-5%							
240	CO ₂ , 0-10 % volume							
241	CO ₂ , 0-100 % volume							
242	PH ₃ , O-1 ppm							
243	AsH ₃ , 0-1 ppm							
244	ETO, 0-30 ppm							
245	SiH₄, 0-50 ppm							
246	COCl ₂ , 0-1 ppm							
247	Formaldehyde, 0-50 ppm							
270	Formaldehyde, 0-150 ppm							
248	ETO, 0-100 ppm							
250	Methanol, 0-1000 ppm							
286	N ₂ H ₄ , 0-2 ppm							
253	Ethyl Mercaptant, 0-100 ppm							
254	Dimethyl sulfide, 0-100 ppm							
261	CH₄S, 0-100 ppm							
500	R12, 0-1% volume	_						
501	R22, 0-2,000 ppm	_						
502	R134a, 0-2,000 ppm	_						
505	R11, 0-1% volume							

	EL USUARIO						
Gas Code	e Gas						
506	R23, 0-1% volume						
507	Dichloromethane, 0-500 ppm						
508	Chloromethane (Methylchloride), 0-500 ppm						
509	R123, 0-2,000 ppm						
510	FX56, 0-2,000 ppm						
511	R143a, 0-2,000 ppm						
512	R404a, 0-2,000 ppm						
513	R507, 0-2,000 ppm						
514	R410a, 0-1,000 ppm						
515	R32, 0-1,000 ppm						
516	R227, 0-1% volume						
517	R407c, 0-1,000 ppm						
518	R408a, 0-4,000 ppm						
519	R407f, 0-1000ppm						
528	R407f, 0-2,000ppm						
520	R404f, 0-5,000ppm						
521	R245fa, 0-1,000ppm						
523	R407a, 0-1,000ppm						
524	R422d, 0-4,000ppm						
533	R452A, 0-2000ppm						
525	R1234ze, 0-1,000ppm						
533	R1234ze, 0-2,000ppm						
662	R1234yf, 0-1000ppm						
526	R1234yf, 0-2,000ppm						
532	R1233zd, 0-2,000ppm						
529	R449a, 0-2,000ppm						
531	R32, 0-2,000ppm						
527	SF ₆ , 0-2,000ppm						
656	Ethanol, 0-500 ppm						
657	Toluene, 0- 500 ppm						
658	Isopropanol, 0-500 ppm						
659	2-Butanone (MEK), 0-500 ppm						
660	Xylene, 0-500 ppm						
661	Styrene, 0-500 ppm						
663	Benzene, 0-500ppm						
MS1	Flamable gases, 0-100% LEL (ISO)						
MS2	Flamable gases, 0-100% LEL (IEC)						

DETECTOR EXPLOSIMETRICO TRANSMISOR
PARA GASES TOXICOS Y OXIGENO
MANUAL DEL USUARIO

To know you part number, please follow these instructions:

The reference is broken down as follows:

OLCT100-XPIR-001-1

OLCT 100 XP IR Transmitter, 0-100% LEL CH4, ATEX, M20 cable entry

Range :	Туре :	Gas:	Approval and entry of cable range
OLC100	XP	Codified from 1 to 999,	1 – ATEX and M20 cable entry - Aluminum
OLCT100	IS	Includes gas and detection	3 - ATEX and ¾NPT cable entry - Aluminum
OLCT100HT5*	XPIR	range	5 – ATEX and M20 cable entry – Stainless steel
OLCT100HT10*	XPA		7 - ATEX and ¾NPT cable entry – Stainless steel
OLCT100HT15*			

^{*} Sensor movable up to 5, 10 or 15 meters using a high temperature cable

AMERICAS

14880 Skinner Rd Cypress TX 77429, USA

Tel.: +1-713-559-9200

EMEA

Rue Orfila Z.I. Est - CS 20417 62027 ARRAS Cedex, **FRANCE**

Tel.: +33 (0)3 21 60 80 80

ASIA PACIFIC

Room 04, 9th Floor, 275 Ruiping Road, Xuhui District SHANGHAI

CHINA

TGFD_APAC@Teledyne.com

www.teledynegasandflamedetection.com

© 2024 Teledyne Oldham Simtronics. All right reserved. NPO100SP Revision P.1 / June 2024